team-10/env/Lib/site-packages/transformers/models/emu3/configuration_emu3.py
2025-08-02 07:34:44 +02:00

328 lines
16 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class Emu3VQVAEConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Emu3VQVAE`]. It is used to instantiate an VQ-VAE
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a configuration to the VQ model presented in Emu3 paper.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
codebook_size (`int`, *optional*, defaults to 32768):
Codebook size of the VQ model.
embed_dim (`int`, *optional*, defaults to 4):
Dimension of the quantized vector in codebook.
latent_channels (`int`, *optional*, defaults to 4):
Dimension of the output channel of encoder and the input channel of decoder
double_latent (`bool`, *optional*, defaults to `False`):
Whether double the output dim of the encoder.
in_channels (`int`, *optional*, defaults to 3):
Input channel of encoder.
out_channels (`int`, *optional*, defaults to 3):
Output channel of decoder.
temporal_downsample_factor (`int`, *optional*, defaults to 4):
Temporal downsample factor.
base_channels (`int`, *optional*, defaults to 256):
Basic channel number of the intermediate blocks.
channel_multiplier (`list[int]`, *optional*, defaults to `[1, 2, 2, 4]`):
Channel scaling factor of the intermediate blocks.
num_res_blocks (`int`, *optional*, defaults to 2):
Residual block number in each stage.
attn_resolutions (`list[int]`, *optional*, defaults to `[3]`):
Stage indices to apply attention.
hidden_size (`int`, *optional*, defaults to 1024):
Dimension of the hidden representations in the attention layer.
num_attention_heads (`int`, *optional*, defaults to 1):
Number of attention heads for each attention layer.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import Emu3VQVAE, Emu3VQVAEConfig
>>> # Initializing a video VQ model of Emu3 configuration
>>> configuration = Emu3VQVAEConfig()
>>> # Initializing a model from the Emu3 VQ model style configuration
>>> model = Emu3VQVAE(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "emu3_vqgan"
base_config_key = "vq_config"
def __init__(
self,
codebook_size: int = 32768,
embed_dim: int = 4,
latent_channels: int = 4,
double_latent: bool = False,
in_channels: int = 3,
out_channels: int = 3,
temporal_downsample_factor: int = 4,
base_channels: int = 256,
channel_multiplier: list[int] = [1, 2, 2, 4],
num_res_blocks: int = 2,
attn_resolutions: list[int] = [3],
hidden_size: int = 1024,
num_attention_heads: int = 1,
attention_dropout: float = 0.0,
**kwargs,
):
super().__init__(**kwargs)
self.codebook_size = codebook_size
self.embed_dim = embed_dim
self.latent_channels = latent_channels
self.double_latent = double_latent
self.in_channels = in_channels
self.out_channels = out_channels
self.temporal_downsample_factor = temporal_downsample_factor
self.base_channels = base_channels
self.channel_multiplier = channel_multiplier
self.num_res_blocks = num_res_blocks
self.attn_resolutions = attn_resolutions
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.attention_dropout = attention_dropout
class Emu3TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Emu3TextModel`]. It is used to instantiate a
emu3 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 184622):
Vocabulary size of the Emu3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Emu3Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 9216):
The maximum sequence length that this model might ever be used with. Emu supports up to 9216 tokens,
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 151643):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 151849):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 151850):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
```python
>>> from transformers import Emu3Model, Emu3Config
>>> # Initializing a Emu3-community/Emu3-Chat-hf style configuration
>>> configuration = Emu3Config()
>>> # Initializing a model from the Emu3-community/Emu3-Chat-hf style configuration
>>> model = Emu3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "emu3_text_model"
base_config_key = "text_config"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size: int = 184622,
hidden_size: int = 4096,
intermediate_size: int = 14336,
num_hidden_layers: int = 32,
num_attention_heads: int = 32,
num_key_value_heads: Optional[int] = 8,
hidden_act: str = "silu",
max_position_embeddings: int = 9216,
rms_norm_eps: float = 1e-5,
use_cache: bool = True,
pad_token_id: int = 151643,
bos_token_id: int = 151849,
eos_token_id: int = 151850,
tie_word_embeddings: bool = False,
rope_theta: float = 1000000.0,
rope_scaling: Optional = None,
mlp_bias=False,
attention_bias=False,
attention_dropout: float = 0.1,
initializer_range: float = 0.02,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.mlp_bias = mlp_bias
self.attention_bias = attention_bias
self.initializer_range = initializer_range
rope_config_validation(self)
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class Emu3Config(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`Emu3Model`]. It is used to instantiate a
emu3 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vq_config (`Union[Dict, Emu3VQVAEConfig]`, *optional*):
Emu3VQVAEConfig instance containing the configuration for the VQ-VAE model.
text_config (`Union[Dict, Emu3TextConfig]``, *optional*):
Emu3TextConfig instance containing the configuration for the language model.
vocabulary_map (`dict`, *optional*):
A dictionary containing the vocabulary map from the tokenizer. Used to obtain tokens from the image inputs.
"""
model_type = "emu3"
keys_to_ignore_at_inference = ["past_key_values"]
sub_configs = {"text_config": Emu3TextConfig, "vq_config": Emu3VQVAEConfig}
def __init__(
self,
vq_config: Union[dict, Emu3VQVAEConfig] = None,
text_config: Union[dict, Emu3TextConfig] = None,
vocabulary_map: Optional[dict[int, int]] = None,
**kwargs,
):
if vq_config is None:
vq_config = Emu3VQVAEConfig()
elif isinstance(vq_config, dict):
vq_config = Emu3VQVAEConfig(**vq_config)
if text_config is None:
text_config = Emu3TextConfig()
elif isinstance(text_config, dict):
text_config = Emu3TextConfig(**text_config)
self.vq_config = vq_config
self.text_config = text_config
self.vocabulary_map = vocabulary_map
self.image_token_id = vocabulary_map.get("<image>") if vocabulary_map is not None else None
super().__init__(**kwargs)
__all__ = ["Emu3Config", "Emu3TextConfig", "Emu3VQVAEConfig"]