team-10/env/Lib/site-packages/transformers/models/janus/processing_janus.py
2025-08-02 07:34:44 +02:00

184 lines
8.2 KiB
Python

# coding=utf-8
# Copyright 2025 Deepseek AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Janus.
"""
from typing import Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
logger = logging.get_logger(__name__)
DEFAULT_SYSTEM_PROMPT = (
"You are a helpful language and vision assistant. "
"You are able to understand the visual content that the user provides, "
"and assist the user with a variety of tasks using natural language.\n\n"
)
class JanusTextKwargs(TextKwargs, total=False):
generation_mode: str
class JanusProcessorKwargs(ProcessingKwargs, total=False):
text_kwargs: JanusTextKwargs
_defaults = {
"text_kwargs": {"padding": False, "generation_mode": "text"},
"common_kwargs": {"return_tensors": "pt"},
}
class JanusProcessor(ProcessorMixin):
r"""
Constructs a Janus processor which wraps a Janus Image Processor and a Llama tokenizer into a single processor.
[`JanusProcessor`] offers all the functionalities of [`JanusImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~JanusProcessor.__call__`] and [`~JanusProcessor.decode`] for more information.
Args:
image_processor ([`JanusImageProcessor`]):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`]):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
use_default_system_prompt (`str`, *optional*, defaults to `False`):
Use default system prompt for Text Generation.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "JanusImageProcessor"
tokenizer_class = "LlamaTokenizerFast"
def __init__(self, image_processor, tokenizer, chat_template=None, use_default_system_prompt=False, **kwargs):
self.num_image_tokens = 576
self.image_token = tokenizer.image_token
self.image_start_token = tokenizer.boi_token
self.image_end_token = tokenizer.eoi_token
self.use_default_system_prompt = use_default_system_prompt
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
images: ImageInput = None,
videos=None,
audio=None,
**kwargs: Unpack[JanusProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
JanusImageProcessor's [`~JanusImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
JanusProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs
)
if text is None and images is None:
raise ValueError("You must specify either text or images.")
if text is not None:
if isinstance(text, str):
text = [text]
elif not (isinstance(text, (list, tuple)) and all(isinstance(t, str) for t in text)):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
generation_mode = output_kwargs["text_kwargs"].pop("generation_mode")
# Replace the image token with expanded image tokens.
prompt_strings = []
one_img_tokens = self.image_start_token + (self.image_token * self.num_image_tokens) + self.image_end_token
for prompt in text:
prompt = prompt.replace(self.image_token, one_img_tokens)
if self.use_default_system_prompt and generation_mode == "text":
prompt = DEFAULT_SYSTEM_PROMPT + prompt
if generation_mode == "image":
prompt += self.image_start_token
prompt_strings.append(prompt)
data = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
# Process images if pixel values are provided.
if images is not None and generation_mode != "image":
data["pixel_values"] = self.image_processor(images=images, **output_kwargs["images_kwargs"])[
"pixel_values"
]
return BatchFeature(data=data)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def postprocess(self, images: ImageInput, **kwargs):
"""
Forwards all arguments to the image processor's `postprocess` method.
Refer to the original method's docstring for more details.
"""
return self.image_processor.postprocess(images, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["JanusProcessor"]