team-10/env/Lib/site-packages/transformers/models/longt5/modeling_longt5.py
2025-08-02 07:34:44 +02:00

2196 lines
101 KiB
Python

# coding=utf-8
# Copyright 2022 Google LLC., LongT5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LongT5 model."""
import copy
import math
import warnings
from typing import Any, Optional, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
auto_docstring,
is_torch_flex_attn_available,
is_torch_fx_proxy,
is_torchdynamo_compiling,
logging,
)
from .configuration_longt5 import LongT5Config
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
# TODO: Update before the merge
def _pad_to_multiple(x: torch.Tensor, block_len: int, dim: int, pad_value: int = 0) -> torch.Tensor:
"""Pad a tensor so that a sequence length will be a multiple of `block_len`"""
pad_len = -x.shape[dim] % block_len
# Handle cases when an empty input sequence is given
if not all(x.shape):
new_shape = list(x.shape)
new_shape[dim] += pad_len
return torch.zeros(new_shape, dtype=x.dtype)
pad = [(0, 0)] * x.ndim
pad[dim] = (0, pad_len)
pad = sum(pad[::-1], ())
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
return x
def _split_into_blocks(x: torch.Tensor, block_len: int, dim: int) -> torch.Tensor:
"""Split an input tensor into blocks of a given `block_len` along the given `dim`. If the dimension length
is not a multiple of `block_len`, it will be padded first with selected `pad_value`.
"""
# pad tensor to multiple of block_len
if x.shape[dim] % block_len != 0:
x = _pad_to_multiple(x, block_len, dim, pad_value=0)
num_blocks = x.shape[dim] // block_len
output_shape = x.shape[:dim] + (num_blocks, block_len) + x.shape[(dim + 1) :]
# If 0 is in output_shape, we cannot apply reshape because of incompatibility with ONNX conversion
if 0 in output_shape:
return torch.empty(output_shape, dtype=x.dtype, device=x.device)
return x.reshape(output_shape)
def _concatenate_3_blocks(x: torch.Tensor, block_dim: int, sequence_dim: int, pad_value: int = 0) -> torch.Tensor:
"""Concatenate three consecutive blocks for each input block for local attentiont.
For more information, see: https://huggingface.co/papers/2112.07916.
"""
num_blocks = x.shape[block_dim]
pad = [(0, 0)] * x.ndim
pad[block_dim] = (1, 1)
pad = sum(pad[::-1], ())
# [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len]
x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value)
blocks_list: list[torch.Tensor] = []
for i in range(3):
# We use indexing approach here:
# https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs
indices = [slice(0, None)] * x.ndim
indices[block_dim] = slice(i, i + num_blocks)
indices = tuple(indices)
blocks_list.append(x[indices])
# [batch_size, num_blocks, 3 * block_len, ...]
return torch.cat(blocks_list, dim=sequence_dim)
def _make_3block_relative_position_ids(block_len: int) -> torch.Tensor:
"""Makes 3-blocked relative position ids for local attention."""
position_ids = torch.arange(3 * block_len, dtype=torch.int32)
center_position_ids = position_ids[block_len:-block_len]
# [block_len, 3 * block_len]
relative_position_ids = position_ids.unsqueeze(0) - center_position_ids.unsqueeze(1)
return relative_position_ids
def _mask_local_attention_mask(local_attention_mask: torch.Tensor, block_len: int) -> torch.Tensor:
"""Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius."""
relative_position_ids = _make_3block_relative_position_ids(block_len)
locality_mask = torch.abs(relative_position_ids) < block_len
locality_mask = locality_mask[None, None, :, :]
locality_mask = locality_mask.to(local_attention_mask.device)
return torch.logical_and(local_attention_mask, locality_mask)
def _get_local_attention_mask(attention_mask: torch.Tensor, block_len: int, device: torch.device) -> torch.Tensor:
"""Prepare attention mask to be applied for a local attention."""
# [batch_size, num_blocks, block_len]
_blocked_attention_mask = _split_into_blocks(attention_mask, block_len, dim=1)
# [batch_size, num_block, 3 * block_len]
_3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_dim=1, sequence_dim=2)
_blocked_attention_mask = _blocked_attention_mask.unsqueeze(-1)
_3blocked_attention_mask = _3blocked_attention_mask.unsqueeze(-2)
# [batch_size, num_block, block_len, 3 * block_len]
local_attention_mask = torch.logical_and(_blocked_attention_mask, _3blocked_attention_mask)
local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len)
# [batch_size, 1, num_block, block_len, 3 * block_len]
return local_attention_mask.unsqueeze(1).to(device)
def _make_global_fixed_block_ids(
attention_mask: torch.Tensor, global_block_size: int
) -> tuple[torch.Tensor, torch.Tensor]:
"""Obtain the "fixed block" global id corresponding to each input token.
This implementation is a simplified version of the original Flaxformr implementation adopted from:
https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py.
In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for
the whole fixed block, are assigned to the preceding block.
Padding tokens from the original sequence are represented by -1.
"""
batch_size, seq_len = attention_mask.shape[:2]
def handle_orphan_tokens(block_ids: torch.Tensor) -> torch.Tensor:
block_ends = (torch.arange(seq_len) % global_block_size) == global_block_size - 1
block_ends = block_ends.to(block_ids.device)
true_block_ends = torch.logical_and(block_ends, block_ids >= 0)
full_blocks = true_block_ends.sum(-1).unsqueeze(-1).type(block_ids.dtype) - 1
block_ids = torch.where(block_ids < full_blocks, block_ids, full_blocks)
return block_ids
fixed_block_mask = torch.ones_like(attention_mask, device=attention_mask.device) / global_block_size
fixed_block_mask = torch.cumsum(fixed_block_mask, axis=1) - fixed_block_mask
mask = torch.where(attention_mask != 0.0, 1.0, -1000.0).type(attention_mask.dtype)
global_block_ids = torch.floor(mask + fixed_block_mask - 1.0).type(attention_mask.dtype)
_global_block_ids_lower_bound = torch.tensor(-1, dtype=global_block_ids.dtype, device=global_block_ids.device)
global_block_ids = torch.where(
global_block_ids > _global_block_ids_lower_bound, global_block_ids, _global_block_ids_lower_bound
)
# set padding tokens to -1
global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1)
# [batch_size, seq_len]
global_block_ids = handle_orphan_tokens(global_block_ids)
num_globals = seq_len // global_block_size
# [batch_size, seq_len // global_block_size]
if num_globals > 0:
_sequence_block_ids_max = torch.max(global_block_ids, dim=-1).values.repeat(num_globals, 1).transpose(0, 1)
else:
_sequence_block_ids_max = torch.zeros(
batch_size, 0, dtype=global_block_ids.dtype, device=global_block_ids.device
)
global_segment_ids = torch.cumsum(torch.ones(batch_size, num_globals), dim=-1) - 1
global_segment_ids = global_segment_ids.to(attention_mask.device)
global_segment_ids = torch.where(global_segment_ids <= _sequence_block_ids_max, 1, 0)
return global_block_ids.type(torch.int), global_segment_ids.type(torch.int)
def _make_side_relative_position_ids(attention_mask: torch.Tensor, global_block_size: int) -> torch.Tensor:
"""Create the relative position tensor for local -> global attention."""
block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size)
global_seq_len = global_segment_ids.shape[-1]
global_positions = torch.arange(global_seq_len, device=block_ids.device)
side_relative_position = global_positions - block_ids[..., None]
return side_relative_position.type(torch.int64)
def _create_global_aggregates(
hidden_states: torch.Tensor, block_ids: torch.Tensor, global_seq_len: int
) -> torch.Tensor:
"""Compute individual block aggregates by summing over individual blocks."""
# (batch..., seq_len, global_seq_len))
block_ids = block_ids.where(
block_ids >= 0, torch.tensor(global_seq_len, dtype=block_ids.dtype, device=block_ids.device)
)
one_hot_block_ids = nn.functional.one_hot(block_ids.type(torch.int64), global_seq_len + 1)[:, :, :-1]
return torch.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids.type(hidden_states.dtype))
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->LongT5
class LongT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# LongT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://huggingface.co/papers/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
try:
from apex.normalization import FusedRMSNorm
LongT5LayerNorm = FusedRMSNorm # noqa
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of LongT5LayerNorm")
except ImportError:
# using the normal LongT5LayerNorm
pass
except Exception:
logger.warning("discovered apex but it failed to load, falling back to LongT5LayerNorm")
pass
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->LongT5
class LongT5DenseActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
class LongT5DenseGatedActDense(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->LongT5
class LongT5LayerFF(nn.Module):
def __init__(self, config: LongT5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = LongT5DenseGatedActDense(config)
else:
self.DenseReluDense = LongT5DenseActDense(config)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->LongT5
class LongT5Attention(nn.Module):
def __init__(
self,
config: LongT5Config,
has_relative_attention_bias=False,
layer_idx: Optional[int] = None,
):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.layer_idx = layer_idx
if layer_idx is None and self.is_decoder:
logger.warning_once(
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None, cache_position=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if cache_position is None:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
else:
context_position = cache_position[:, None].to(device)
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder)
batch_size, seq_length = hidden_states.shape[:2]
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder
is_cross_attention = key_value_states is not None
query_states = self.q(hidden_states)
query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
# Check is encoder-decoder model is being used. Otherwise we'll get `DynamicCache`
if past_key_value is not None and isinstance(past_key_value, EncoderDecoderCache):
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
else:
curr_past_key_value = past_key_value
current_states = key_value_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value is not None and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.layers[self.layer_idx].keys
value_states = curr_past_key_value.layers[self.layer_idx].values
else:
key_states = self.k(current_states)
value_states = self.v(current_states)
key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
key_length = key_states.shape[-2]
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device, cache_position=cache_position
)
position_bias = position_bias[:, :, -seq_length:, :]
if mask is not None:
causal_mask = mask[:, :, :, : key_states.shape[-2]]
position_bias = position_bias + causal_mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, -1, self.inner_dim)
attn_output = self.o(attn_output)
outputs = (attn_output, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5LocalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
target_device = (
self.relative_attention_bias.weight.device
if self.relative_attention_bias.weight.device.type != "meta"
else None
)
memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Compute scores
scores = torch.einsum(
"...qhd,...khd->...hqk", query_states, key_states
) # (batch_size, num_block, n_heads, block_len, 3 * block_len)
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if mask is not None:
# Replace masked positions with -1e10 (according to the original implementation)
mask = torch.where(mask > 0, 0.0, -1e10)
# We need to adjust position bias shape to be sum with mask
position_bias = position_bias + mask.transpose(1, 2)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
outputs = (
attn_output,
position_bias,
)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class LongT5TransientGlobalAttention(nn.Module):
def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None:
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.global_block_size = config.global_block_size
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
# Relativen attention bias & Layer norm for global attention
if self.has_relative_attention_bias:
self.global_relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.global_input_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
# Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, block_length: int):
"""Compute binned relative position bias"""
target_device = (
self.relative_attention_bias.weight.device
if self.relative_attention_bias.weight.device.type != "meta"
else None
)
memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device)
context_position = memory_position[block_length:-block_length]
# (block_length, 3 * block_length)
relative_position = memory_position[None, :] - context_position[:, None]
relative_position_bucket = self._relative_position_bucket(
relative_position, # (block_length, 3 * block_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (block_length, 3 * block_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# (1, 1, num_heads, block_length, 3 * block_length)
values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0)
return values
def compute_side_bias(self, mask: torch.Tensor, global_segment_ids: torch.Tensor) -> torch.Tensor:
# (batch_size, 1, seq_len, global_seq_len)
side_attention_mask = torch.eq(mask[..., None], global_segment_ids[:, None, :])[:, None, ...]
attention_side_bias = torch.where(side_attention_mask > 0, 0.0, -1e10)
# (batch_size, seq_len, global_seq_len)
side_relative_position = _make_side_relative_position_ids(mask, self.global_block_size)
side_relative_position_bucket = self._relative_position_bucket(
side_relative_position,
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
# (batch_size, seq_len, global_seq_len, num_heads)
side_bias = self.global_relative_attention_bias(side_relative_position_bucket)
# (batch_size, num_heads, seq_len, global_seq_len)
side_bias = side_bias.permute([0, 3, 1, 2])
# (batch_size, num_heads, seq_len, global_seq_len)
attention_side_bias = attention_side_bias + side_bias
return attention_side_bias
def forward(
self,
hidden_states,
mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
batch_size, seq_length = hidden_states.shape[:2]
def shape(states):
"""projection"""
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim)
def unshape(states):
"""reshape"""
return states.contiguous().view(batch_size, -1, self.inner_dim)
# Prepare components for transient-global attention
# Obtain block_ids and global_segment_ids
# global_seq_len := seq_len // self.global_block_size
# shapes: (batch_size, seq_len) & (batch_size, global_seq_len)
block_ids, global_segment_ids = _make_global_fixed_block_ids(
mask if mask is not None else torch.ones(hidden_states.shape[:-1]),
self.global_block_size,
)
# Create global inputs
_global_seq_len = global_segment_ids.shape[-1]
global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len)
global_inputs = self.global_input_layer_norm(global_inputs)
# get query states -> (batch_size, seq_length, n_heads, dim_per_head)
query_states = shape(self.q(hidden_states))
key_states = shape(self.k(hidden_states))
value_states = shape(self.v(hidden_states))
# Get global/side key/value states shape: (batch_size, global_seq_len, n_heads, dim_per_head)
side_key_states = shape(self.k(global_inputs))
side_value_states = shape(self.v(global_inputs))
# Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head)
query_states = _split_into_blocks(query_states, self.block_len, dim=1)
key_states = _split_into_blocks(key_states, self.block_len, dim=1)
value_states = _split_into_blocks(value_states, self.block_len, dim=1)
# Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head)
key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2)
value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2)
# Tile side inputs across local key/value blocks
# New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head)
reps = [1] * (side_key_states.ndim + 1)
reps[1] = key_states.shape[1]
side_key_states = side_key_states.unsqueeze(1).repeat(reps)
side_value_states = side_value_states.unsqueeze(1).repeat(reps)
# Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones
# New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head)
key_states = torch.cat([key_states, side_key_states], dim=2)
value_states = torch.cat([value_states, side_value_states], dim=2)
# Compute scores -> (batch_size, num_block, n_heads, block_len, 3 * block_len + global_seq_len)
scores = torch.einsum("...qhd,...khd->...hqk", query_states, key_states)
if mask is not None:
# We need to adjust position bias shape to be sum with mask
local_attention_mask = _get_local_attention_mask(mask, self.block_len, hidden_states.device)
# Replace masked positions with -10_000 (according to the original implementation)
local_attention_mask = torch.where(local_attention_mask > 0, 0.0, -1e10)
else:
local_attention_mask = None
if position_bias is None:
# position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len)
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, 1, self.n_heads, self.block_len, 3 * self.block_len),
device=scores.device,
dtype=scores.dtype,
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(self.block_len)
if local_attention_mask is not None:
# (batch_size, 1, n_heads, block_len, 3 * block_len)
position_bias = position_bias + local_attention_mask.transpose(1, 2)
position_bias = position_bias.type(scores.dtype)
# Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len)
if mask is None:
mask = torch.ones(batch_size, seq_length)
# (batch_size, num_heads, seq_len, global_seq_len)
side_position_bias = self.compute_side_bias(mask, global_segment_ids)
# (batch_size, num_blocks, num_heads, block_len, global_seq_len)
side_position_bias = _split_into_blocks(side_position_bias, self.block_len, dim=-2).transpose(1, 2)
side_position_bias = side_position_bias.type(scores.dtype).to(scores.device)
# (batch_size, num_blocks, num_heads, block_len, 3 * block_len + global_seq_len)
position_bias = torch.cat([position_bias, side_position_bias], dim=-1)
scores += position_bias
# (batch_size, num_blocks, n_heads, block_len, 3 * block_len + global_seq_len)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_weights = attn_weights.type(value_states.dtype)
attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states))
attn_output = attn_output[:, :seq_length, :]
attn_output = self.o(attn_output)
outputs = (attn_output, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->LongT5
class LongT5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.SelfAttention = LongT5Attention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerLocalSelfAttention(nn.Module):
"""Local self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.LocalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5LayerTransientGlobalSelfAttention(nn.Module):
"""Transient-Global self attention used in encoder"""
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
**kwargs: Any, # to accept past_key_value and use_cache kwargs
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.TransientGlobalSelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->LongT5
class LongT5LayerCrossAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
cache_position=cache_position,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class LongT5Block(GradientCheckpointingLayer):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.is_decoder = config.is_decoder
if config.is_decoder:
attention_layer = LongT5LayerSelfAttention
elif config.encoder_attention_type == "local":
attention_layer = LongT5LayerLocalSelfAttention
elif config.encoder_attention_type == "transient-global":
attention_layer = LongT5LayerTransientGlobalSelfAttention
else:
raise ValueError(
"For encoder attention mechanism, either `local` or `transient-global` attention type is expected, "
f"but got {config.encoder_attention_type}."
)
self.layer = nn.ModuleList()
self.layer.append(
attention_layer(config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx)
)
if self.is_decoder:
self.layer.append(LongT5LayerCrossAttention(config, layer_idx=layer_idx))
self.layer.append(LongT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
cache_position=None,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = self_attention_outputs[0]
attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
query_length=cache_position[-1] + 1,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = cross_attention_outputs[0]
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[1:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
return (
(hidden_states,) + attention_outputs
) # hidden-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
@auto_docstring
class LongT5PreTrainedModel(PreTrainedModel):
config: LongT5Config
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["LongT5Block"]
_can_compile_fullgraph = False # TODO: @raushan more involved due to local/global attn
@property
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, LongT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, (LongT5Model, LongT5ForConditionalGeneration, LongT5EncoderModel)):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, LongT5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, LongT5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, (LongT5Attention, LongT5LocalAttention, LongT5TransientGlobalAttention)):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
if isinstance(module, LongT5TransientGlobalAttention):
module.global_relative_attention_bias.weight.data.normal_(
mean=0.0, std=factor * ((d_model) ** -0.5)
)
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->LongT5
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In LongT5 it is usually set to the pad_token_id. "
"See LongT5 docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class LongT5Stack(LongT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.is_decoder = config.is_decoder
self.local_radius = config.local_radius
self.block_len = self.local_radius + 1
self.block = nn.ModuleList(
[
LongT5Block(config, has_relative_attention_bias=bool(i == 0), layer_idx=i)
for i in range(config.num_layers)
]
)
self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
if self.is_decoder:
if use_cache and past_key_values is None:
if self.config.is_encoder_decoder:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
else:
past_key_values = DynamicCache()
elif not self.is_decoder:
# do not pass cache object down the line for encoder stack
# it messes indexing later in decoder-stack because cache object is modified in-place
past_key_values = None
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if attention_mask is None and not is_torchdynamo_compiling():
# required mask seq length can be calculated via length of past
mask_seq_length = past_key_values_length + seq_length
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.is_decoder:
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values.self_attention_cache
if isinstance(past_key_values, EncoderDecoderCache)
else past_key_values,
output_attentions,
)
# We use local attention in encoder self-attention, otherwise standard self & cross attentions are used
elif self.config.encoder_attention_type == "local":
causal_mask = _get_local_attention_mask(attention_mask, self.block_len, inputs_embeds.device)
else: # we need to use both local attention mask and standard extended mask for transient-global attention
causal_mask = attention_mask
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, layer_module in enumerate(self.block):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
causal_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias, # as a positional argument for gradient checkpointing
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
return_dict=return_dict,
cache_position=cache_position,
)
# layer_outputs is a tuple with:
# hidden-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
hidden_states = layer_outputs[0]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[1]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[2],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[4],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
past_key_values,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.gptj.modeling_gptj.GPTJModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: Union[torch.Tensor, "BlockMask"],
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype = input_tensor.dtype
sequence_length = input_tensor.shape[1]
if using_compilable_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu", "npu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.gptj.modeling_gptj.GPTJModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
@auto_docstring
class LongT5Model(LongT5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.tie_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.tie_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5
Training](./longt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
Example:
```python
>>> from transformers import AutoTokenizer, LongT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5Model.from_pretrained("google/long-t5-local-base")
>>> # Let's try a very long encoder input.
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@auto_docstring(
custom_intro="""
LONGT5 Model with a `language modeling` head on top.
"""
)
class LongT5ForConditionalGeneration(LongT5PreTrainedModel, GenerationMixin):
_keys_to_ignore_on_load_unexpected = [
r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.tie_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.tie_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = LongT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[tuple[tuple[torch.Tensor]]] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5
Training](./longt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Examples:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps")
>>> model = LongT5ForConditionalGeneration.from_pretrained(
... "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps"
... )
>>> # Let's try a very long input.
>>> inputs = tokenizer(100 * "studies have shown that owning a dog is good for you ", return_tensors="pt")
>>> input_ids = inputs.input_ids
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
abstractthe aim of this article is to provide an overview of the literature on the role of dog
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
@auto_docstring
class LongT5EncoderModel(LongT5PreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight"]
_keys_to_ignore_on_load_unexpected = [r"decoder"]
def __init__(self, config: LongT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.tie_encoder_decoder = False
self.encoder = LongT5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple[torch.FloatTensor], BaseModelOutput]:
r"""
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so
you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5
Training](./longt5#training).
Example:
```python
>>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base")
>>> model = LongT5EncoderModel.from_pretrained("google/long-t5-local-base")
>>> input_ids = tokenizer(
... 100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
__all__ = ["LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel"]