190 lines
8 KiB
Python
190 lines
8 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""MAMBA2 configuration"""
|
|
|
|
import math
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class Mamba2Config(PretrainedConfig):
|
|
"""
|
|
This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the MAMBA2
|
|
[state-spaces/mamba2-2.8b](https://huggingface.co/state-spaces/mamba2-2.8b) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
num_heads (`int`, *optional*, defaults to 128):
|
|
Number of heads for the evolution matrices of mamba 2.
|
|
head_dim (`int`, *optional*, defaults to 64):
|
|
Dimension of each head.
|
|
vocab_size (`int`, *optional*, defaults to 32768):
|
|
Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`Mamba2Model`].
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimensionality of the embeddings and hidden states.
|
|
state_size (`int`, *optional*, defaults to 128): shape of the state space latents.
|
|
num_hidden_layers (`int`, *optional*, defaults to 64):
|
|
Number of hidden layers in the model.
|
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon to use in the layer normalization layers.
|
|
pad_token_id (`int`, *optional*, defaults to 1):
|
|
Padding token id.
|
|
bos_token_id (`int`, *optional*, defaults to 0):
|
|
The id of the beginning of sentence token in the vocabulary.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
The id of the end of sentence token in the vocabulary.
|
|
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
|
|
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
|
|
n_groups (`int`, *optional*, defaults to 8):
|
|
Number of groups for the evolution matrices of mamba 2.
|
|
use_bias (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
|
|
use_conv_bias (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to use bias in the convolution layer of the mixer block.
|
|
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
initializer_range (`float`, *optional*, defaults to 0.1):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
|
|
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
|
|
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
|
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
|
time_step_min (`float`, *optional*, defaults to 0.001):
|
|
Minimum `time_step` used to bound `dt_proj.bias`.
|
|
time_step_max (`float`, *optional*, defaults to 0.1):
|
|
Maximum `time_step` used to bound `dt_proj.bias`.
|
|
time_step_floor (`float`, *optional*, defaults to 0.0001):
|
|
Minimum clamping value of the `dt_proj.bias` layer initialization.
|
|
time_step_limit (`tuple`, *optional*, defaults to `(0.0, inf)`):
|
|
Accepted range of time step values.
|
|
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to rescale `out_proj` weights when initializing.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the cache should be used.
|
|
rms_norm (`bool`, *optional*, defaults to `True`):
|
|
Whether to use RMS norm or not.
|
|
chunk_size (`int`, *optional*, defaults to 256):
|
|
Size of the chunks that will comprise the sequence.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether to tie word embeddings or not.
|
|
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import Mamba2Config, Mamba2Model
|
|
|
|
>>> # Initializing a Mamba2 configuration
|
|
>>> configuration = Mamba2Config()
|
|
|
|
>>> # Initializing a model (with random weights) from the configuration
|
|
>>> model = Mamba2Model(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "mamba2"
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads=128,
|
|
head_dim=64,
|
|
vocab_size=32768,
|
|
hidden_size=4096,
|
|
state_size=128,
|
|
num_hidden_layers=64,
|
|
layer_norm_epsilon=1e-5,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
expand=2,
|
|
conv_kernel=4,
|
|
n_groups=8,
|
|
use_bias=False,
|
|
use_conv_bias=True,
|
|
hidden_act="silu",
|
|
initializer_range=0.1,
|
|
residual_in_fp32=True,
|
|
time_step_rank="auto",
|
|
time_step_min=0.001,
|
|
time_step_max=0.1,
|
|
time_step_floor=1e-4,
|
|
time_step_limit=(0.0, float("inf")),
|
|
rescale_prenorm_residual=False,
|
|
use_cache=True,
|
|
rms_norm=True,
|
|
chunk_size=256,
|
|
tie_word_embeddings=False,
|
|
**kwargs,
|
|
):
|
|
if (hidden_size * expand) != (num_heads * head_dim):
|
|
raise ValueError(
|
|
"Inconsistent configuration: hidden_size * expand "
|
|
f"({hidden_size * expand}) must equal num_heads * head_dim "
|
|
f"({num_heads * head_dim})."
|
|
)
|
|
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.state_size = state_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.conv_kernel = conv_kernel
|
|
self.expand = expand
|
|
|
|
self.bos_token_id = bos_token_id
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.use_bias = use_bias
|
|
self.use_conv_bias = use_conv_bias
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
|
|
self.time_step_min = time_step_min
|
|
self.time_step_max = time_step_max
|
|
self.time_step_floor = time_step_floor
|
|
self.rescale_prenorm_residual = rescale_prenorm_residual
|
|
self.residual_in_fp32 = residual_in_fp32
|
|
self.use_cache = use_cache
|
|
self.n_groups = n_groups
|
|
self.num_heads = num_heads
|
|
self.head_dim = head_dim
|
|
self.rms_norm = rms_norm
|
|
self.state_size = state_size
|
|
self.chunk_size = chunk_size
|
|
self.time_step_limit = time_step_limit
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
|
|
super().__init__(
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
pad_token_id=pad_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
__all__ = ["Mamba2Config"]
|