team-10/env/Lib/site-packages/transformers/models/mlcd/modular_mlcd.py
2025-08-02 07:34:44 +02:00

529 lines
23 KiB
Python

# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Union
import torch
import torch.nn as nn
from ...configuration_utils import PretrainedConfig
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, logging
from ..clip.modeling_clip import (
CLIPMLP,
CLIPAttention,
CLIPEncoder,
CLIPEncoderLayer,
CLIPVisionEmbeddings,
CLIPVisionModel,
CLIPVisionTransformer,
)
from ..llama.modeling_llama import eager_attention_forward
from ..qwen2_vl.modeling_qwen2_vl import VisionRotaryEmbedding, apply_rotary_pos_emb_vision
logger = logging.get_logger(__name__)
class MLCDVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MLCDVisionModel`]. It is used to instantiate a MLCD
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the vision encoder of the MLCD
[DeepGlint-AI/mlcd-vit-bigG-patch14-336](https://huggingface.co/DeepGlint-AI/mlcd-vit-bigG-patch14-336) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1664):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
projection_dim (`int`, *optional*, defaults to 1024):
Dimensionality of text and vision projection layers.
num_hidden_layers (`int`, *optional*, defaults to 48):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 336):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import MLCDVisionConfig, MLCDVisionModel
>>> # Initializing a MLCDVisionConfig with DeepGlint-AI/mlcd-vit-bigG-patch14-336 style configuration
>>> configuration = MLCDVisionConfig()
>>> # Initializing a MLCDVisionModel (with random weights) from the DeepGlint-AI/mlcd-vit-bigG-patch14-336 style configuration
>>> model = MLCDVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mlcd_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=1664,
intermediate_size=8192,
num_hidden_layers=48,
num_attention_heads=16,
num_key_value_groups=1,
num_channels=3,
image_size=336,
patch_size=14,
hidden_act="gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_groups = num_key_value_groups
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
class MLCDMLP(CLIPMLP):
pass
class MLCDRotaryEmbedding(VisionRotaryEmbedding):
def forward(self, num_patches_height: int, num_patches_width: int) -> torch.Tensor:
"""
Calculate the Rotary Position Embedding (RoPE) for MLCDVisionModel based on the grid size.
Args:
num_patches_height (int): Number of patches in the height dimension.
num_patches_width (int): Number of patches in the width dimension.
Returns:
torch.Tensor: Rotary positional embeddings for the given grid size.
"""
# Generate position IDs for height and width dimensions
hpos_ids = (
torch.arange(num_patches_height, device=self.inv_freq.device).unsqueeze(1).expand(-1, num_patches_width)
)
wpos_ids = (
torch.arange(num_patches_width, device=self.inv_freq.device).unsqueeze(0).expand(num_patches_height, -1)
)
# Flatten and stack the position IDs
pos_ids = torch.stack([hpos_ids.flatten(), wpos_ids.flatten()], dim=-1)
# Generate the full rotary positional embeddings for the maximum grid size
max_grid_size = max(num_patches_height, num_patches_width)
seq = torch.arange(max_grid_size, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
rotary_pos_emb_full = torch.outer(seq, self.inv_freq)
# Select and flatten the embeddings based on the position IDs
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
class MLCDVisionEmbeddings(CLIPVisionEmbeddings):
def __init__(self, config: MLCDVisionConfig):
super().__init__(config)
del self.position_embedding
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
# patch_embeds -> shape = [batch, width, grid, grid]
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
return embeddings
class MLCDAttention(CLIPAttention):
"""Multi-headed attention with RoPE. Refer to papers:
- Attention is all you need:
https://huggingface.co/papers/1706.03762
- RoFormer: Enhanced Transformer with Rotary Position Embedding:
https://huggingface.co/papers/2104.09864
"""
def __init__(self, config: MLCDVisionConfig):
super().__init__(config)
self.num_key_value_groups = config.num_key_value_groups
self.is_causal = False
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
batch_size, seq_length = hidden_states.shape[:-1]
# Each of shape: [batch_size, seq_length, num_heads, head_dim]
query_states = self.q_proj(hidden_states).reshape((batch_size, seq_length, self.num_heads, self.head_dim))
key_states = self.k_proj(hidden_states).reshape((batch_size, seq_length, self.num_heads, self.head_dim))
value_states = self.v_proj(hidden_states).reshape((batch_size, seq_length, self.num_heads, self.head_dim))
# Apply positional embeddings
cos = position_embeddings[0].unsqueeze(0).float()
sin = position_embeddings[1].unsqueeze(0).float()
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
# Each of shape: [batch_size, num_heads, seq_length, head_dim]
query_states = query_states.permute(0, 2, 1, 3).contiguous()
key_states = key_states.permute(0, 2, 1, 3).contiguous()
value_states = value_states.permute(0, 2, 1, 3).contiguous()
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.dropout,
scaling=self.scale,
is_causal=self.is_causal,
**kwargs,
)
attn_output = attn_output.permute(1, 0, 2, 3).contiguous() # [seq_length, batch_size, num_heads, head_dim]
attn_output = attn_output.view(seq_length, batch_size, -1) # [seq_length, batch_size, embedding_dim]
attn_output = self.out_proj(attn_output)
attn_output = attn_output.permute(1, 0, 2).contiguous() # [batch_size, seq_length, embedding_dim]
return attn_output, attn_weights
class MLCDEncoderLayer(CLIPEncoderLayer):
def __init__(self, config: MLCDVisionConfig):
super().__init__(config)
self.self_attn = MLCDAttention(config)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
Represents the hidden states from the previous layer or the input embeddings.
position_embeddings (`tuple[torch.Tensor, torch.Tensor]`):
A tuple of two tensors, each of shape `(batch, seq_len, embed_dim)`.
Represents absolute positional embeddings for the query and key in the attention mechanism.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class MLCDEncoder(CLIPEncoder):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`MLCDEncoderLayer`].
Args:
config: MLCDVisionConfig
"""
def __init__(self, config: MLCDVisionConfig):
"""Overwrite dummy `MLCDConfig` to `MLCDVisionConfig`."""
super().__init__(config)
def forward(
self,
inputs_embeds: torch.FloatTensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
position_embeddings (`tuple[torch.Tensor, torch.Tensor]`):
A tuple of two tensors, each of shape `(batch, seq_len, embed_dim)`.
Represents absolute positional embeddings for the query and key in the attention mechanism.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
class MLCDVisionTransformer(CLIPVisionTransformer):
def __init__(self, config: MLCDVisionConfig):
super().__init__(config)
self.vision_rotary_embedding = MLCDRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2)
self.class_pos_emb = nn.Parameter(torch.randn(1, config.hidden_size // config.num_attention_heads // 2))
@auto_docstring
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
num_patches_height = pixel_values.shape[-2] // self.config.patch_size
num_patches_width = pixel_values.shape[-1] // self.config.patch_size
rotary_pos_emb = self.vision_rotary_embedding(num_patches_height, num_patches_width)
rotary_pos_emb = rotary_pos_emb.to(self.class_pos_emb.device)
rotary_pos_emb = torch.cat([self.class_pos_emb, rotary_pos_emb], dim=0)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
position_embeddings=position_embeddings,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@auto_docstring
class MLCDPreTrainedModel(PreTrainedModel):
config: MLCDVisionConfig
base_model_prefix = "mlcd"
supports_gradient_checkpointing = True
_supports_flash_attn = True
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, MLCDVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, MLCDAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, MLCDMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, MLCDVisionTransformer):
factor = self.config.initializer_factor
pos_emb_std = (module.config.hidden_size // module.config.num_attention_heads // 2) ** -0.5 * factor
nn.init.normal_(module.class_pos_emb, mean=0.0, std=pos_emb_std)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class MLCDVisionModel(CLIPVisionModel):
@auto_docstring
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
r"""
Example:
```python
>>> import requests
>>> from PIL import Image
>>> from transformers import AutoProcessor, MLCDVisionModel
>>> model = MLCDVisionModel.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-448")
>>> processor = AutoProcessor.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-448")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs, output_attentions=True)
>>> features = outputs.last_hidden_state
>>> print(f"Extracted features shape: {features.shape}")
>>> print(f"Number of attention layers: {len(outputs.attentions)}")
>>> print(f"Attention shape: {outputs.attentions[0].shape}")
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
__all__ = [
"MLCDVisionConfig",
"MLCDPreTrainedModel",
"MLCDVisionModel",
]