team-10/env/Lib/site-packages/transformers/models/mllama/configuration_mllama.py
2025-08-02 07:34:44 +02:00

373 lines
18 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mllama model configuration"""
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class MllamaVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaVisionModel`]. It is used to instantiate an
Mllama vision model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-11B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1280):
Dimensionality of the encoder layers and the pooler layer.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_global_layers (`int`, *optional*, defaults to 8):
Number of global layers in the Transformer encoder.
Vision model has a second transformer encoder, called global.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
intermediate_size (`int`, *optional*, defaults to 5120):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
vision_output_dim (`int`, *optional*, defaults to 7680):
Dimensionality of the vision model output. Includes output of transformer
encoder with intermediate layers and global transformer encoder.
image_size (`int`, *optional*, defaults to 448):
The size (resolution) of each image *tile*.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
max_num_tiles (`int`, *optional*, defaults to 4):
Maximum number of tiles for image splitting.
intermediate_layers_indices (`list[int]`, *optional*, defaults to [3, 7, 15, 23, 30]):
Indices of intermediate layers of transformer encoder from which to extract and output features.
These output features are concatenated with final hidden state of transformer encoder.
supported_aspect_ratios (`list[list[int]]`, *optional*):
List of supported aspect ratios for image splitting. If not specified, the default supported aspect ratios
are [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]] for `max_num_tiles=4`.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import MllamaVisionConfig, MllamaVisionModel
>>> # Initializing a Llama config
>>> config = MllamaVisionConfig()
>>> # Initializing a vision model from the mllama-11b style configuration
>>> model = MllamaVisionModel(config)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mllama_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size: int = 1280,
hidden_act: str = "gelu",
num_hidden_layers: int = 32,
num_global_layers: int = 8,
num_attention_heads: int = 16,
num_channels: int = 3,
intermediate_size: int = 5120,
vision_output_dim: int = 7680,
image_size: int = 448,
patch_size: int = 14,
norm_eps: float = 1e-5,
max_num_tiles: int = 4,
intermediate_layers_indices: Optional[list[int]] = None,
supported_aspect_ratios: Optional[list[list[int]]] = None,
initializer_range: float = 0.02,
**kwargs,
):
if supported_aspect_ratios is None:
if max_num_tiles != 4:
raise ValueError("max_num_tiles must be 4 for default supported aspect ratios")
supported_aspect_ratios = [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]]
if intermediate_layers_indices is None:
intermediate_layers_indices = [3, 7, 15, 23, 30]
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.num_hidden_layers = num_hidden_layers
self.num_channels = num_channels
self.intermediate_size = intermediate_size
self.image_size = image_size
self.vision_output_dim = vision_output_dim
self.patch_size = patch_size
self.intermediate_layers_indices = intermediate_layers_indices
self.num_global_layers = num_global_layers
self.max_num_tiles = max_num_tiles
self.norm_eps = norm_eps
self.attention_heads = num_attention_heads
self.supported_aspect_ratios = supported_aspect_ratios
self.initializer_range = initializer_range
super().__init__(**kwargs)
@property
def max_aspect_ratio_id(self) -> int:
return len(self.supported_aspect_ratios)
class MllamaTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaTextModel`]. It is used to instantiate an
Mllama text model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-11B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 128256):
Vocabulary size of the Mllama text model. Defines the maximum number of different tokens that can be represented
by the `inputs_ids` passed when calling [`MllamaTextModel`].
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the embeddings and hidden states.
hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the encoder and pooler.
num_hidden_layers (`int`, *optional*, defaults to 40):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If not
specified, will default to `num_attention_heads`.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
rope_theta (`float`, *optional*, defaults to `500000.0`):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
cross_attention_layers (`list[int]`, *optional*):
Indices of the cross attention layers. If not specified, will default to [3, 8, 13, 18, 23, 28, 33, 38].
dropout (`float`, *optional*, defaults to 0):
The dropout probability for self- and cross-attention layers.
bos_token_id (`int`, *optional*, defaults to 128000):
The id of the beginning of sentence token.
eos_token_id (`int`, *optional*, defaults to 128001):
The id of the end of sentence token.
pad_token_id (`int`, *optional*, defaults to 128004):
The id of the padding token.
Example:
```python
>>> from transformers import MllamaTextModel, MllamaTextConfig
>>> # Initializing a Mllama text config
>>> config = MllamaTextConfig()
>>> # Initializing a model from the Mllama text configuration
>>> model = MllamaTextModel(config)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mllama_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size: int = 128256,
hidden_size: int = 4096,
hidden_act: str = "silu",
num_hidden_layers: int = 40,
num_attention_heads: int = 32,
num_key_value_heads: int = 8,
intermediate_size: int = 14_336,
rope_theta: float = 500_000,
rope_scaling: Optional[dict] = None,
rms_norm_eps: float = 1e-5,
max_position_embeddings: int = 131_072,
initializer_range: float = 0.02,
use_cache: bool = True,
tie_word_embeddings: bool = False,
cross_attention_layers: Optional[list[int]] = None,
dropout: float = 0,
bos_token_id: int = 128000,
eos_token_id: int = 128001,
pad_token_id: Optional[int] = 128004,
**kwargs,
):
if cross_attention_layers is None:
cross_attention_layers = [3, 8, 13, 18, 23, 28, 33, 38]
self.vocab_size = vocab_size
self.num_hidden_layers = num_hidden_layers
self.cross_attention_layers = cross_attention_layers
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rms_norm_eps = rms_norm_eps
self.intermediate_size = intermediate_size
self.dropout = dropout
self.hidden_act = hidden_act
self.rope_scaling = rope_scaling
self.max_position_embeddings = max_position_embeddings
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class MllamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an
Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-9B.
e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`):
The config object or dictionary of the text backbone.
image_token_index (`int`, *optional*, defaults to 128256):
The image token index to encode the image prompt.
Example:
```python
>>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = MllamaVisionConfig()
>>> # Initializing a Llama config
>>> text_config = MllamaTextConfig()
>>> # Initializing a mllama-11b style configuration
>>> configuration = MllamaConfig(vision_config, text_config)
>>> # Initializing a model from the mllama-11b style configuration
>>> model = MllamaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mllama"
attribute_map = {
"image_token_id": "image_token_index",
}
sub_configs = {"text_config": MllamaTextConfig, "vision_config": MllamaVisionConfig}
def __init__(
self,
vision_config=None,
text_config=None,
image_token_index=128256,
**kwargs,
):
if vision_config is None:
self.vision_config = MllamaVisionConfig()
logger.info("vision_config is None, using default mllama vision config")
elif isinstance(vision_config, dict):
self.vision_config = MllamaVisionConfig(**vision_config)
elif isinstance(vision_config, MllamaVisionConfig):
self.vision_config = vision_config
self.image_token_index = image_token_index
if text_config is None:
self.text_config = MllamaTextConfig()
logger.info("text_config is None, using default mllama text config")
elif isinstance(text_config, dict):
self.text_config = MllamaTextConfig(**text_config)
elif isinstance(text_config, MllamaTextConfig):
self.text_config = text_config
super().__init__(**kwargs)
__all__ = ["MllamaConfig"]