team-10/env/Lib/site-packages/transformers/models/olmoe/configuration_olmoe.py
2025-08-02 07:34:44 +02:00

182 lines
8.9 KiB
Python

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OLMoE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class OlmoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`OlmoeModel`]. It is used to instantiate an OLMoE
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/OLMoE-1B-7B-0924](https://huggingface.co/allenai/OLMoE-1B-7B-0924).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the OLMoE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`OlmoeModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 16):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
clip_qkv (`float`, *optional*):
If not `None`, elements of query, key and value attention states are clipped so that their
absolute value does not exceed this value.
num_experts_per_tok (`int`, *optional*, defaults to 8):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 64):
Number of routed experts.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.01):
The aux loss factor for the total loss.
norm_topk_prob (`bool`, *optional*, defaults to `False`):
Whether to normalize the topk probabilities.
```python
>>> from transformers import OlmoeModel, OlmoeConfig
>>> # Initializing a OLMoE 7B A1B style configuration
>>> configuration = OlmoeConfig()
>>> # Initializing a model from the OLMoE 7B A1B style configuration
>>> model = OlmoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "olmoe"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=50304,
hidden_size=2048,
intermediate_size=2048,
num_hidden_layers=16,
num_attention_heads=16,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
clip_qkv=None,
num_experts_per_tok=8,
num_experts=64,
output_router_logits=False,
router_aux_loss_coef=0.01,
norm_topk_prob=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.clip_qkv = clip_qkv
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.norm_topk_prob = norm_topk_prob
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["OlmoeConfig"]