172 lines
6 KiB
Python
172 lines
6 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch Qwen3 model."""
|
|
|
|
from typing import Callable, Optional
|
|
|
|
import torch
|
|
|
|
from ...cache_utils import Cache
|
|
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
|
from ...modeling_outputs import CausalLMOutputWithPast
|
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
|
from ...processing_utils import Unpack
|
|
from ...utils import TransformersKwargs, logging
|
|
from ..gemma.modeling_gemma import GemmaMLP
|
|
from ..llama.modeling_llama import (
|
|
LlamaAttention,
|
|
)
|
|
from ..qwen2.modeling_qwen2 import (
|
|
Qwen2DecoderLayer,
|
|
Qwen2ForCausalLM,
|
|
Qwen2ForQuestionAnswering,
|
|
Qwen2ForSequenceClassification,
|
|
Qwen2ForTokenClassification,
|
|
Qwen2Model,
|
|
Qwen2PreTrainedModel,
|
|
Qwen2RMSNorm,
|
|
apply_rotary_pos_emb,
|
|
eager_attention_forward,
|
|
)
|
|
from .configuration_qwen3 import Qwen3Config
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CHECKPOINT_FOR_DOC = "Qwen/Qwen3-8B"
|
|
|
|
|
|
class Qwen3RMSNorm(Qwen2RMSNorm):
|
|
pass
|
|
|
|
|
|
class Qwen3MLP(GemmaMLP):
|
|
pass
|
|
|
|
|
|
class Qwen3Attention(LlamaAttention):
|
|
def __init__(self, config: Qwen3Config, layer_idx: int):
|
|
super().__init__(config, layer_idx)
|
|
self.q_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
|
|
self.k_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
|
|
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
|
attention_mask: Optional[torch.Tensor],
|
|
past_key_value: Optional[Cache] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs: Unpack[FlashAttentionKwargs],
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
|
input_shape = hidden_states.shape[:-1]
|
|
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
|
|
cos, sin = position_embeddings
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
if past_key_value is not None:
|
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
attention_interface: Callable = eager_attention_forward
|
|
if self.config._attn_implementation != "eager":
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
|
|
attn_output, attn_weights = attention_interface(
|
|
self,
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
dropout=0.0 if not self.training else self.attention_dropout,
|
|
scaling=self.scaling,
|
|
sliding_window=self.sliding_window, # diff with Llama
|
|
**kwargs,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
return attn_output, attn_weights
|
|
|
|
|
|
class Qwen3DecoderLayer(Qwen2DecoderLayer):
|
|
pass
|
|
|
|
|
|
class Qwen3PreTrainedModel(Qwen2PreTrainedModel):
|
|
pass
|
|
|
|
|
|
class Qwen3Model(Qwen2Model):
|
|
pass
|
|
|
|
|
|
class Qwen3ForCausalLM(Qwen2ForCausalLM):
|
|
def forward(
|
|
self,
|
|
**super_kwargs: Unpack[TransformersKwargs],
|
|
) -> CausalLMOutputWithPast:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, Qwen3ForCausalLM
|
|
|
|
>>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
return super().forward(**super_kwargs)
|
|
|
|
|
|
class Qwen3ForSequenceClassification(Qwen2ForSequenceClassification):
|
|
pass
|
|
|
|
|
|
class Qwen3ForTokenClassification(Qwen2ForTokenClassification):
|
|
pass
|
|
|
|
|
|
class Qwen3ForQuestionAnswering(Qwen2ForQuestionAnswering):
|
|
pass
|
|
|
|
|
|
__all__ = [
|
|
"Qwen3ForCausalLM",
|
|
"Qwen3ForQuestionAnswering",
|
|
"Qwen3PreTrainedModel",
|
|
"Qwen3Model",
|
|
"Qwen3ForSequenceClassification",
|
|
"Qwen3ForTokenClassification",
|
|
]
|