team-10/env/Lib/site-packages/transformers/quantizers/quantizer_vptq.py
2025-08-02 07:34:44 +02:00

99 lines
3.7 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Optional
from .base import HfQuantizer
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..utils import is_accelerate_available, is_torch_available, is_vptq_available, logging
from ..utils.quantization_config import QuantizationConfigMixin
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class VptqHfQuantizer(HfQuantizer):
"""
Quantizer of the VPTQ method. Enables the loading of prequantized models.
"""
requires_calibration = True
required_packages = ["vptq"]
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available():
raise ImportError("Using `vptq` quantization requires Accelerate: `pip install accelerate`")
if not is_vptq_available():
raise ImportError("Using `vptq` quantization requires VPTQ>=0.0.4: `pip install -U vptq`")
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
if torch.cuda.is_available():
torch_dtype = torch.float16
logger.info(
"CUDA available. Assuming VPTQ inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually."
)
else:
import vptq
device_availability = getattr(vptq, "device_availability", lambda device: False)
if device_availability("cpu") is True:
raise RuntimeError("No GPU found. Please wait for the next release of VPTQ to use CPU inference")
torch_dtype = torch.float32
logger.info("No GPU found. Assuming VPTQ inference on CPU and loading the model in `torch.float32`.")
return torch_dtype
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
keep_in_fp32_modules: Optional[list[str]] = None,
**kwargs,
):
"""
we don't have param like modules_to_not_convert to indicate which layers should not be quantized
because `quantization_config` include the layers that should be quantized
"""
from ..integrations import replace_with_vptq_linear
self.modules_to_not_convert = self.get_modules_to_not_convert(
model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules
)
replace_with_vptq_linear(
model,
quantization_config=self.quantization_config,
modules_to_not_convert=self.modules_to_not_convert,
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
@property
def is_trainable(self) -> bool:
return False
def is_serializable(self, safe_serialization=None):
return True