team-10/venv/Lib/site-packages/huggingface_hub/inference/_providers/replicate.py
2025-08-02 02:00:33 +02:00

90 lines
3.7 KiB
Python

from typing import Any, Dict, Optional, Union
from huggingface_hub.hf_api import InferenceProviderMapping
from huggingface_hub.inference._common import RequestParameters, _as_dict, _as_url
from huggingface_hub.inference._providers._common import TaskProviderHelper, filter_none
from huggingface_hub.utils import get_session
_PROVIDER = "replicate"
_BASE_URL = "https://api.replicate.com"
class ReplicateTask(TaskProviderHelper):
def __init__(self, task: str):
super().__init__(provider=_PROVIDER, base_url=_BASE_URL, task=task)
def _prepare_headers(self, headers: Dict, api_key: str) -> Dict:
headers = super()._prepare_headers(headers, api_key)
headers["Prefer"] = "wait"
return headers
def _prepare_route(self, mapped_model: str, api_key: str) -> str:
if ":" in mapped_model:
return "/v1/predictions"
return f"/v1/models/{mapped_model}/predictions"
def _prepare_payload_as_dict(
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
) -> Optional[Dict]:
mapped_model = provider_mapping_info.provider_id
payload: Dict[str, Any] = {"input": {"prompt": inputs, **filter_none(parameters)}}
if ":" in mapped_model:
version = mapped_model.split(":", 1)[1]
payload["version"] = version
return payload
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any:
response_dict = _as_dict(response)
if response_dict.get("output") is None:
raise TimeoutError(
f"Inference request timed out after 60 seconds. No output generated for model {response_dict.get('model')}"
"The model might be in cold state or starting up. Please try again later."
)
output_url = (
response_dict["output"] if isinstance(response_dict["output"], str) else response_dict["output"][0]
)
return get_session().get(output_url).content
class ReplicateTextToImageTask(ReplicateTask):
def __init__(self):
super().__init__("text-to-image")
def _prepare_payload_as_dict(
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
) -> Optional[Dict]:
payload: Dict = super()._prepare_payload_as_dict(inputs, parameters, provider_mapping_info) # type: ignore[assignment]
if provider_mapping_info.adapter_weights_path is not None:
payload["input"]["lora_weights"] = f"https://huggingface.co/{provider_mapping_info.hf_model_id}"
return payload
class ReplicateTextToSpeechTask(ReplicateTask):
def __init__(self):
super().__init__("text-to-speech")
def _prepare_payload_as_dict(
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
) -> Optional[Dict]:
payload: Dict = super()._prepare_payload_as_dict(inputs, parameters, provider_mapping_info) # type: ignore[assignment]
payload["input"]["text"] = payload["input"].pop("prompt") # rename "prompt" to "text" for TTS
return payload
class ReplicateImageToImageTask(ReplicateTask):
def __init__(self):
super().__init__("image-to-image")
def _prepare_payload_as_dict(
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
) -> Optional[Dict]:
image_url = _as_url(inputs, default_mime_type="image/jpeg")
payload: Dict[str, Any] = {"input": {"input_image": image_url, **filter_none(parameters)}}
mapped_model = provider_mapping_info.provider_id
if ":" in mapped_model:
version = mapped_model.split(":", 1)[1]
payload["version"] = version
return payload