team-10/venv/Lib/site-packages/narwhals/_dask/namespace.py
2025-08-02 02:00:33 +02:00

350 lines
13 KiB
Python

from __future__ import annotations
import operator
from functools import reduce
from typing import TYPE_CHECKING, cast
import dask.dataframe as dd
import pandas as pd
from narwhals._compliant import (
CompliantThen,
CompliantWhen,
DepthTrackingNamespace,
LazyNamespace,
)
from narwhals._dask.dataframe import DaskLazyFrame
from narwhals._dask.expr import DaskExpr
from narwhals._dask.selectors import DaskSelectorNamespace
from narwhals._dask.utils import (
align_series_full_broadcast,
narwhals_to_native_dtype,
validate_comparand,
)
from narwhals._expression_parsing import (
ExprKind,
combine_alias_output_names,
combine_evaluate_output_names,
)
from narwhals._utils import Implementation
if TYPE_CHECKING:
from collections.abc import Iterable, Sequence
import dask.dataframe.dask_expr as dx
from narwhals._compliant.typing import ScalarKwargs
from narwhals._utils import Version
from narwhals.typing import ConcatMethod, IntoDType, NonNestedLiteral
class DaskNamespace(
LazyNamespace[DaskLazyFrame, DaskExpr, dd.DataFrame],
DepthTrackingNamespace[DaskLazyFrame, DaskExpr],
):
_implementation: Implementation = Implementation.DASK
@property
def selectors(self) -> DaskSelectorNamespace:
return DaskSelectorNamespace.from_namespace(self)
@property
def _expr(self) -> type[DaskExpr]:
return DaskExpr
@property
def _lazyframe(self) -> type[DaskLazyFrame]:
return DaskLazyFrame
def __init__(self, *, version: Version) -> None:
self._version = version
def lit(self, value: NonNestedLiteral, dtype: IntoDType | None) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
if dtype is not None:
native_dtype = narwhals_to_native_dtype(dtype, self._version)
native_pd_series = pd.Series([value], dtype=native_dtype, name="literal")
else:
native_pd_series = pd.Series([value], name="literal")
npartitions = df._native_frame.npartitions
dask_series = dd.from_pandas(native_pd_series, npartitions=npartitions)
return [dask_series[0].to_series()]
return self._expr(
func,
depth=0,
function_name="lit",
evaluate_output_names=lambda _df: ["literal"],
alias_output_names=None,
version=self._version,
)
def len(self) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
# We don't allow dataframes with 0 columns, so `[0]` is safe.
return [df._native_frame[df.columns[0]].size.to_series()]
return self._expr(
func,
depth=0,
function_name="len",
evaluate_output_names=lambda _df: ["len"],
alias_output_names=None,
version=self._version,
)
def all_horizontal(self, *exprs: DaskExpr, ignore_nulls: bool) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
series = (s for _expr in exprs for s in _expr(df))
# Note on `ignore_nulls`: Dask doesn't support storing arbitrary Python
# objects in `object` dtype, so we don't need the same check we have for pandas-like.
it = (
(
# NumPy-backed 'bool' dtype can't contain nulls so doesn't need filling.
s if s.dtype == "bool" else s.fillna(True) # noqa: FBT003
for s in series
)
if ignore_nulls
else series
)
return [reduce(operator.and_, align_series_full_broadcast(df, *it))]
return self._expr(
call=func,
depth=max(x._depth for x in exprs) + 1,
function_name="all_horizontal",
evaluate_output_names=combine_evaluate_output_names(*exprs),
alias_output_names=combine_alias_output_names(*exprs),
version=self._version,
)
def any_horizontal(self, *exprs: DaskExpr, ignore_nulls: bool) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
series = (s for _expr in exprs for s in _expr(df))
# Note on `ignore_nulls`: Dask doesn't support storing arbitrary Python
# objects in `object` dtype, so we don't need the same check we have for pandas-like.
it = (
(
# NumPy-backed 'bool' dtype can't contain nulls so doesn't need filling.
s if s.dtype == "bool" else s.fillna(False) # noqa: FBT003
for s in series
)
if ignore_nulls
else series
)
return [reduce(operator.or_, align_series_full_broadcast(df, *it))]
return self._expr(
call=func,
depth=max(x._depth for x in exprs) + 1,
function_name="any_horizontal",
evaluate_output_names=combine_evaluate_output_names(*exprs),
alias_output_names=combine_alias_output_names(*exprs),
version=self._version,
)
def sum_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
series = align_series_full_broadcast(
df, *(s for _expr in exprs for s in _expr(df))
)
return [dd.concat(series, axis=1).sum(axis=1)]
return self._expr(
call=func,
depth=max(x._depth for x in exprs) + 1,
function_name="sum_horizontal",
evaluate_output_names=combine_evaluate_output_names(*exprs),
alias_output_names=combine_alias_output_names(*exprs),
version=self._version,
)
def concat(
self, items: Iterable[DaskLazyFrame], *, how: ConcatMethod
) -> DaskLazyFrame:
if not items:
msg = "No items to concatenate" # pragma: no cover
raise AssertionError(msg)
dfs = [i._native_frame for i in items]
cols_0 = dfs[0].columns
if how == "vertical":
for i, df in enumerate(dfs[1:], start=1):
cols_current = df.columns
if not (
(len(cols_current) == len(cols_0)) and (cols_current == cols_0).all()
):
msg = (
"unable to vstack, column names don't match:\n"
f" - dataframe 0: {cols_0.to_list()}\n"
f" - dataframe {i}: {cols_current.to_list()}\n"
)
raise TypeError(msg)
return DaskLazyFrame(
dd.concat(dfs, axis=0, join="inner"), version=self._version
)
if how == "diagonal":
return DaskLazyFrame(
dd.concat(dfs, axis=0, join="outer"), version=self._version
)
raise NotImplementedError
def mean_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
expr_results = [s for _expr in exprs for s in _expr(df)]
series = align_series_full_broadcast(df, *(s.fillna(0) for s in expr_results))
non_na = align_series_full_broadcast(
df, *(1 - s.isna() for s in expr_results)
)
num = reduce(lambda x, y: x + y, series) # pyright: ignore[reportOperatorIssue]
den = reduce(lambda x, y: x + y, non_na) # pyright: ignore[reportOperatorIssue]
return [cast("dx.Series", num / den)] # pyright: ignore[reportOperatorIssue]
return self._expr(
call=func,
depth=max(x._depth for x in exprs) + 1,
function_name="mean_horizontal",
evaluate_output_names=combine_evaluate_output_names(*exprs),
alias_output_names=combine_alias_output_names(*exprs),
version=self._version,
)
def min_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
series = align_series_full_broadcast(
df, *(s for _expr in exprs for s in _expr(df))
)
return [dd.concat(series, axis=1).min(axis=1)]
return self._expr(
call=func,
depth=max(x._depth for x in exprs) + 1,
function_name="min_horizontal",
evaluate_output_names=combine_evaluate_output_names(*exprs),
alias_output_names=combine_alias_output_names(*exprs),
version=self._version,
)
def max_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
series = align_series_full_broadcast(
df, *(s for _expr in exprs for s in _expr(df))
)
return [dd.concat(series, axis=1).max(axis=1)]
return self._expr(
call=func,
depth=max(x._depth for x in exprs) + 1,
function_name="max_horizontal",
evaluate_output_names=combine_evaluate_output_names(*exprs),
alias_output_names=combine_alias_output_names(*exprs),
version=self._version,
)
def when(self, predicate: DaskExpr) -> DaskWhen:
return DaskWhen.from_expr(predicate, context=self)
def concat_str(
self, *exprs: DaskExpr, separator: str, ignore_nulls: bool
) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
expr_results = [s for _expr in exprs for s in _expr(df)]
series = (
s.astype(str) for s in align_series_full_broadcast(df, *expr_results)
)
null_mask = [s.isna() for s in align_series_full_broadcast(df, *expr_results)]
if not ignore_nulls:
null_mask_result = reduce(operator.or_, null_mask)
result = reduce(lambda x, y: x + separator + y, series).where(
~null_mask_result, None
)
else:
init_value, *values = [
s.where(~nm, "") for s, nm in zip(series, null_mask)
]
separators = (
nm.map({True: "", False: separator}, meta=str)
for nm in null_mask[:-1]
)
result = reduce(
operator.add, (s + v for s, v in zip(separators, values)), init_value
)
return [result]
return self._expr(
call=func,
depth=max(x._depth for x in exprs) + 1,
function_name="concat_str",
evaluate_output_names=getattr(
exprs[0], "_evaluate_output_names", lambda _df: ["literal"]
),
alias_output_names=getattr(exprs[0], "_alias_output_names", None),
version=self._version,
)
def coalesce(self, *exprs: DaskExpr) -> DaskExpr:
def func(df: DaskLazyFrame) -> list[dx.Series]:
series = align_series_full_broadcast(
df, *(s for _expr in exprs for s in _expr(df))
)
return [reduce(lambda x, y: x.fillna(y), series)]
return self._expr(
call=func,
depth=max(x._depth for x in exprs) + 1,
function_name="coalesce",
evaluate_output_names=combine_evaluate_output_names(*exprs),
alias_output_names=combine_alias_output_names(*exprs),
version=self._version,
)
class DaskWhen(CompliantWhen[DaskLazyFrame, "dx.Series", DaskExpr]):
@property
def _then(self) -> type[DaskThen]:
return DaskThen
def __call__(self, df: DaskLazyFrame) -> Sequence[dx.Series]:
then_value = (
self._then_value(df)[0]
if isinstance(self._then_value, DaskExpr)
else self._then_value
)
otherwise_value = (
self._otherwise_value(df)[0]
if isinstance(self._otherwise_value, DaskExpr)
else self._otherwise_value
)
condition = self._condition(df)[0]
# re-evaluate DataFrame if the condition aggregates to force
# then/otherwise to be evaluated against the aggregated frame
assert self._condition._metadata is not None # noqa: S101
if self._condition._metadata.is_scalar_like:
new_df = df._with_native(condition.to_frame())
condition = self._condition.broadcast(ExprKind.AGGREGATION)(df)[0]
df = new_df
if self._otherwise_value is None:
(condition, then_series) = align_series_full_broadcast(
df, condition, then_value
)
validate_comparand(condition, then_series)
return [then_series.where(condition)] # pyright: ignore[reportArgumentType]
(condition, then_series, otherwise_series) = align_series_full_broadcast(
df, condition, then_value, otherwise_value
)
validate_comparand(condition, then_series)
validate_comparand(condition, otherwise_series)
return [then_series.where(condition, otherwise_series)] # pyright: ignore[reportArgumentType]
class DaskThen(CompliantThen[DaskLazyFrame, "dx.Series", DaskExpr, DaskWhen], DaskExpr):
_depth: int = 0
_scalar_kwargs: ScalarKwargs = {} # noqa: RUF012
_function_name: str = "whenthen"