772 lines
25 KiB
Python
772 lines
25 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING, Any, ClassVar, cast, overload
|
|
|
|
import polars as pl
|
|
|
|
from narwhals._polars.utils import (
|
|
BACKEND_VERSION,
|
|
catch_polars_exception,
|
|
extract_args_kwargs,
|
|
extract_native,
|
|
narwhals_to_native_dtype,
|
|
native_to_narwhals_dtype,
|
|
)
|
|
from narwhals._utils import Implementation, requires
|
|
from narwhals.dependencies import is_numpy_array_1d
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import Iterable, Iterator, Mapping, Sequence
|
|
from types import ModuleType
|
|
from typing import Literal, TypeVar
|
|
|
|
import pandas as pd
|
|
import pyarrow as pa
|
|
from typing_extensions import Self, TypeAlias, TypeIs
|
|
|
|
from narwhals._polars.dataframe import Method, PolarsDataFrame
|
|
from narwhals._polars.expr import PolarsExpr
|
|
from narwhals._polars.namespace import PolarsNamespace
|
|
from narwhals._utils import Version, _LimitedContext
|
|
from narwhals.dtypes import DType
|
|
from narwhals.series import Series
|
|
from narwhals.typing import Into1DArray, IntoDType, MultiIndexSelector, _1DArray
|
|
|
|
T = TypeVar("T")
|
|
IncludeBreakpoint: TypeAlias = Literal[False, True]
|
|
|
|
|
|
# Series methods where PolarsSeries just defers to Polars.Series directly.
|
|
INHERITED_METHODS = frozenset(
|
|
[
|
|
"__add__",
|
|
"__and__",
|
|
"__floordiv__",
|
|
"__invert__",
|
|
"__iter__",
|
|
"__mod__",
|
|
"__mul__",
|
|
"__or__",
|
|
"__pow__",
|
|
"__radd__",
|
|
"__rand__",
|
|
"__rfloordiv__",
|
|
"__rmod__",
|
|
"__rmul__",
|
|
"__ror__",
|
|
"__rsub__",
|
|
"__rtruediv__",
|
|
"__sub__",
|
|
"__truediv__",
|
|
"abs",
|
|
"all",
|
|
"any",
|
|
"arg_max",
|
|
"arg_min",
|
|
"arg_true",
|
|
"clip",
|
|
"count",
|
|
"cum_max",
|
|
"cum_min",
|
|
"cum_prod",
|
|
"cum_sum",
|
|
"diff",
|
|
"drop_nulls",
|
|
"exp",
|
|
"fill_null",
|
|
"filter",
|
|
"gather_every",
|
|
"head",
|
|
"is_between",
|
|
"is_finite",
|
|
"is_first_distinct",
|
|
"is_in",
|
|
"is_last_distinct",
|
|
"is_null",
|
|
"is_sorted",
|
|
"is_unique",
|
|
"item",
|
|
"kurtosis",
|
|
"len",
|
|
"log",
|
|
"max",
|
|
"mean",
|
|
"min",
|
|
"mode",
|
|
"n_unique",
|
|
"null_count",
|
|
"quantile",
|
|
"rank",
|
|
"round",
|
|
"sample",
|
|
"shift",
|
|
"skew",
|
|
"sqrt",
|
|
"std",
|
|
"sum",
|
|
"tail",
|
|
"to_arrow",
|
|
"to_frame",
|
|
"to_list",
|
|
"to_pandas",
|
|
"unique",
|
|
"var",
|
|
"zip_with",
|
|
]
|
|
)
|
|
|
|
|
|
class PolarsSeries:
|
|
_implementation = Implementation.POLARS
|
|
|
|
def __init__(self, series: pl.Series, *, version: Version) -> None:
|
|
self._native_series: pl.Series = series
|
|
self._version = version
|
|
|
|
@property
|
|
def _backend_version(self) -> tuple[int, ...]:
|
|
return self._implementation._backend_version()
|
|
|
|
def __repr__(self) -> str: # pragma: no cover
|
|
return "PolarsSeries"
|
|
|
|
def __narwhals_namespace__(self) -> PolarsNamespace:
|
|
from narwhals._polars.namespace import PolarsNamespace
|
|
|
|
return PolarsNamespace(version=self._version)
|
|
|
|
def __narwhals_series__(self) -> Self:
|
|
return self
|
|
|
|
def __native_namespace__(self) -> ModuleType:
|
|
if self._implementation is Implementation.POLARS:
|
|
return self._implementation.to_native_namespace()
|
|
|
|
msg = f"Expected polars, got: {type(self._implementation)}" # pragma: no cover
|
|
raise AssertionError(msg)
|
|
|
|
def _with_version(self, version: Version) -> Self:
|
|
return self.__class__(self.native, version=version)
|
|
|
|
@classmethod
|
|
def from_iterable(
|
|
cls,
|
|
data: Iterable[Any],
|
|
*,
|
|
context: _LimitedContext,
|
|
name: str = "",
|
|
dtype: IntoDType | None = None,
|
|
) -> Self:
|
|
version = context._version
|
|
dtype_pl = narwhals_to_native_dtype(dtype, version) if dtype else None
|
|
# NOTE: `Iterable` is fine, annotation is overly narrow
|
|
# https://github.com/pola-rs/polars/blob/82d57a4ee41f87c11ca1b1af15488459727efdd7/py-polars/polars/series/series.py#L332-L333
|
|
native = pl.Series(name=name, values=cast("Sequence[Any]", data), dtype=dtype_pl)
|
|
return cls.from_native(native, context=context)
|
|
|
|
@staticmethod
|
|
def _is_native(obj: pl.Series | Any) -> TypeIs[pl.Series]:
|
|
return isinstance(obj, pl.Series)
|
|
|
|
@classmethod
|
|
def from_native(cls, data: pl.Series, /, *, context: _LimitedContext) -> Self:
|
|
return cls(data, version=context._version)
|
|
|
|
@classmethod
|
|
def from_numpy(cls, data: Into1DArray, /, *, context: _LimitedContext) -> Self:
|
|
native = pl.Series(data if is_numpy_array_1d(data) else [data])
|
|
return cls.from_native(native, context=context)
|
|
|
|
def to_narwhals(self) -> Series[pl.Series]:
|
|
return self._version.series(self, level="full")
|
|
|
|
def _with_native(self, series: pl.Series) -> Self:
|
|
return self.__class__(series, version=self._version)
|
|
|
|
@overload
|
|
def _from_native_object(self, series: pl.Series) -> Self: ...
|
|
|
|
@overload
|
|
def _from_native_object(self, series: pl.DataFrame) -> PolarsDataFrame: ...
|
|
|
|
@overload
|
|
def _from_native_object(self, series: T) -> T: ...
|
|
|
|
def _from_native_object(
|
|
self, series: pl.Series | pl.DataFrame | T
|
|
) -> Self | PolarsDataFrame | T:
|
|
if self._is_native(series):
|
|
return self._with_native(series)
|
|
if isinstance(series, pl.DataFrame):
|
|
from narwhals._polars.dataframe import PolarsDataFrame
|
|
|
|
return PolarsDataFrame.from_native(series, context=self)
|
|
# scalar
|
|
return series
|
|
|
|
def _to_expr(self) -> PolarsExpr:
|
|
return self.__narwhals_namespace__()._expr._from_series(self)
|
|
|
|
def __getattr__(self, attr: str) -> Any:
|
|
if attr not in INHERITED_METHODS:
|
|
msg = f"{self.__class__.__name__} has not attribute '{attr}'."
|
|
raise AttributeError(msg)
|
|
|
|
def func(*args: Any, **kwargs: Any) -> Any:
|
|
pos, kwds = extract_args_kwargs(args, kwargs)
|
|
return self._from_native_object(getattr(self.native, attr)(*pos, **kwds))
|
|
|
|
return func
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.native)
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
return self.native.name
|
|
|
|
@property
|
|
def dtype(self) -> DType:
|
|
return native_to_narwhals_dtype(self.native.dtype, self._version)
|
|
|
|
@property
|
|
def native(self) -> pl.Series:
|
|
return self._native_series
|
|
|
|
def alias(self, name: str) -> Self:
|
|
return self._from_native_object(self.native.alias(name))
|
|
|
|
def __getitem__(self, item: MultiIndexSelector[Self]) -> Any | Self:
|
|
if isinstance(item, PolarsSeries):
|
|
return self._from_native_object(self.native.__getitem__(item.native))
|
|
return self._from_native_object(self.native.__getitem__(item))
|
|
|
|
def cast(self, dtype: IntoDType) -> Self:
|
|
dtype_pl = narwhals_to_native_dtype(dtype, self._version)
|
|
return self._with_native(self.native.cast(dtype_pl))
|
|
|
|
@requires.backend_version((1,))
|
|
def replace_strict(
|
|
self,
|
|
old: Sequence[Any] | Mapping[Any, Any],
|
|
new: Sequence[Any],
|
|
*,
|
|
return_dtype: IntoDType | None,
|
|
) -> Self:
|
|
ser = self.native
|
|
dtype = (
|
|
narwhals_to_native_dtype(return_dtype, self._version)
|
|
if return_dtype
|
|
else None
|
|
)
|
|
return self._with_native(ser.replace_strict(old, new, return_dtype=dtype))
|
|
|
|
def to_numpy(self, dtype: Any = None, *, copy: bool | None = None) -> _1DArray:
|
|
return self.__array__(dtype, copy=copy)
|
|
|
|
def __array__(self, dtype: Any, *, copy: bool | None) -> _1DArray:
|
|
if self._backend_version < (0, 20, 29):
|
|
return self.native.__array__(dtype=dtype)
|
|
return self.native.__array__(dtype=dtype, copy=copy)
|
|
|
|
def __eq__(self, other: object) -> Self: # type: ignore[override]
|
|
return self._with_native(self.native.__eq__(extract_native(other)))
|
|
|
|
def __ne__(self, other: object) -> Self: # type: ignore[override]
|
|
return self._with_native(self.native.__ne__(extract_native(other)))
|
|
|
|
# NOTE: `pyright` is being reasonable here
|
|
def __ge__(self, other: Any) -> Self:
|
|
return self._with_native(self.native.__ge__(extract_native(other))) # pyright: ignore[reportArgumentType]
|
|
|
|
def __gt__(self, other: Any) -> Self:
|
|
return self._with_native(self.native.__gt__(extract_native(other))) # pyright: ignore[reportArgumentType]
|
|
|
|
def __le__(self, other: Any) -> Self:
|
|
return self._with_native(self.native.__le__(extract_native(other))) # pyright: ignore[reportArgumentType]
|
|
|
|
def __lt__(self, other: Any) -> Self:
|
|
return self._with_native(self.native.__lt__(extract_native(other))) # pyright: ignore[reportArgumentType]
|
|
|
|
def __rpow__(self, other: PolarsSeries | Any) -> Self:
|
|
result = self.native.__rpow__(extract_native(other))
|
|
if self._backend_version < (1, 16, 1):
|
|
# Explicitly set alias to work around https://github.com/pola-rs/polars/issues/20071
|
|
result = result.alias(self.name)
|
|
return self._with_native(result)
|
|
|
|
def is_nan(self) -> Self:
|
|
try:
|
|
native_is_nan = self.native.is_nan()
|
|
except Exception as e: # noqa: BLE001
|
|
raise catch_polars_exception(e) from None
|
|
if self._backend_version < (1, 18): # pragma: no cover
|
|
select = pl.when(self.native.is_not_null()).then(native_is_nan)
|
|
return self._with_native(pl.select(select)[self.name])
|
|
return self._with_native(native_is_nan)
|
|
|
|
def median(self) -> Any:
|
|
from narwhals.exceptions import InvalidOperationError
|
|
|
|
if not self.dtype.is_numeric():
|
|
msg = "`median` operation not supported for non-numeric input type."
|
|
raise InvalidOperationError(msg)
|
|
|
|
return self.native.median()
|
|
|
|
def to_dummies(self, *, separator: str, drop_first: bool) -> PolarsDataFrame:
|
|
from narwhals._polars.dataframe import PolarsDataFrame
|
|
|
|
if self._backend_version < (0, 20, 15):
|
|
has_nulls = self.native.is_null().any()
|
|
result = self.native.to_dummies(separator=separator)
|
|
output_columns = result.columns
|
|
if drop_first:
|
|
_ = output_columns.pop(int(has_nulls))
|
|
|
|
result = result.select(output_columns)
|
|
else:
|
|
result = self.native.to_dummies(separator=separator, drop_first=drop_first)
|
|
result = result.with_columns(pl.all().cast(pl.Int8))
|
|
return PolarsDataFrame.from_native(result, context=self)
|
|
|
|
def ewm_mean(
|
|
self,
|
|
*,
|
|
com: float | None,
|
|
span: float | None,
|
|
half_life: float | None,
|
|
alpha: float | None,
|
|
adjust: bool,
|
|
min_samples: int,
|
|
ignore_nulls: bool,
|
|
) -> Self:
|
|
extra_kwargs = (
|
|
{"min_periods": min_samples}
|
|
if self._backend_version < (1, 21, 0)
|
|
else {"min_samples": min_samples}
|
|
)
|
|
|
|
native_result = self.native.ewm_mean(
|
|
com=com,
|
|
span=span,
|
|
half_life=half_life,
|
|
alpha=alpha,
|
|
adjust=adjust,
|
|
ignore_nulls=ignore_nulls,
|
|
**extra_kwargs,
|
|
)
|
|
if self._backend_version < (1,): # pragma: no cover
|
|
return self._with_native(
|
|
pl.select(
|
|
pl.when(~self.native.is_null()).then(native_result).otherwise(None)
|
|
)[self.native.name]
|
|
)
|
|
|
|
return self._with_native(native_result)
|
|
|
|
@requires.backend_version((1,))
|
|
def rolling_var(
|
|
self, window_size: int, *, min_samples: int, center: bool, ddof: int
|
|
) -> Self:
|
|
extra_kwargs: dict[str, Any] = (
|
|
{"min_periods": min_samples}
|
|
if self._backend_version < (1, 21, 0)
|
|
else {"min_samples": min_samples}
|
|
)
|
|
return self._with_native(
|
|
self.native.rolling_var(
|
|
window_size=window_size, center=center, ddof=ddof, **extra_kwargs
|
|
)
|
|
)
|
|
|
|
@requires.backend_version((1,))
|
|
def rolling_std(
|
|
self, window_size: int, *, min_samples: int, center: bool, ddof: int
|
|
) -> Self:
|
|
extra_kwargs: dict[str, Any] = (
|
|
{"min_periods": min_samples}
|
|
if self._backend_version < (1, 21, 0)
|
|
else {"min_samples": min_samples}
|
|
)
|
|
return self._with_native(
|
|
self.native.rolling_std(
|
|
window_size=window_size, center=center, ddof=ddof, **extra_kwargs
|
|
)
|
|
)
|
|
|
|
def rolling_sum(self, window_size: int, *, min_samples: int, center: bool) -> Self:
|
|
extra_kwargs: dict[str, Any] = (
|
|
{"min_periods": min_samples}
|
|
if self._backend_version < (1, 21, 0)
|
|
else {"min_samples": min_samples}
|
|
)
|
|
return self._with_native(
|
|
self.native.rolling_sum(
|
|
window_size=window_size, center=center, **extra_kwargs
|
|
)
|
|
)
|
|
|
|
def rolling_mean(self, window_size: int, *, min_samples: int, center: bool) -> Self:
|
|
extra_kwargs: dict[str, Any] = (
|
|
{"min_periods": min_samples}
|
|
if self._backend_version < (1, 21, 0)
|
|
else {"min_samples": min_samples}
|
|
)
|
|
return self._with_native(
|
|
self.native.rolling_mean(
|
|
window_size=window_size, center=center, **extra_kwargs
|
|
)
|
|
)
|
|
|
|
def sort(self, *, descending: bool, nulls_last: bool) -> Self:
|
|
if self._backend_version < (0, 20, 6):
|
|
result = self.native.sort(descending=descending)
|
|
|
|
if nulls_last:
|
|
is_null = result.is_null()
|
|
result = pl.concat([result.filter(~is_null), result.filter(is_null)])
|
|
else:
|
|
result = self.native.sort(descending=descending, nulls_last=nulls_last)
|
|
|
|
return self._with_native(result)
|
|
|
|
def scatter(self, indices: int | Sequence[int], values: Any) -> Self:
|
|
s = self.native.clone().scatter(indices, extract_native(values))
|
|
return self._with_native(s)
|
|
|
|
def value_counts(
|
|
self, *, sort: bool, parallel: bool, name: str | None, normalize: bool
|
|
) -> PolarsDataFrame:
|
|
from narwhals._polars.dataframe import PolarsDataFrame
|
|
|
|
if self._backend_version < (1, 0, 0):
|
|
value_name_ = name or ("proportion" if normalize else "count")
|
|
|
|
result = self.native.value_counts(sort=sort, parallel=parallel).select(
|
|
**{
|
|
(self.native.name): pl.col(self.native.name),
|
|
value_name_: pl.col("count") / pl.sum("count")
|
|
if normalize
|
|
else pl.col("count"),
|
|
}
|
|
)
|
|
else:
|
|
result = self.native.value_counts(
|
|
sort=sort, parallel=parallel, name=name, normalize=normalize
|
|
)
|
|
return PolarsDataFrame.from_native(result, context=self)
|
|
|
|
def cum_count(self, *, reverse: bool) -> Self:
|
|
return self._with_native(self.native.cum_count(reverse=reverse))
|
|
|
|
def __contains__(self, other: Any) -> bool:
|
|
try:
|
|
return self.native.__contains__(other)
|
|
except Exception as e: # noqa: BLE001
|
|
raise catch_polars_exception(e) from None
|
|
|
|
_HIST_EMPTY_SCHEMA: ClassVar[Mapping[IncludeBreakpoint, Sequence[str]]] = {
|
|
True: ["breakpoint", "count"],
|
|
False: ["count"],
|
|
}
|
|
|
|
def hist_from_bins(
|
|
self, bins: list[float], *, include_breakpoint: bool
|
|
) -> PolarsDataFrame:
|
|
if len(bins) <= 1:
|
|
native = pl.DataFrame(schema=self._HIST_EMPTY_SCHEMA[include_breakpoint])
|
|
elif self.native.is_empty():
|
|
if include_breakpoint:
|
|
native = (
|
|
pl.Series(bins[1:])
|
|
.to_frame("breakpoint")
|
|
.with_columns(count=pl.lit(0, pl.Int64))
|
|
)
|
|
else:
|
|
native = pl.select(count=pl.zeros(len(bins) - 1, pl.Int64))
|
|
else:
|
|
return self._hist_from_data(
|
|
bins=bins, bin_count=None, include_breakpoint=include_breakpoint
|
|
)
|
|
return self.__narwhals_namespace__()._dataframe.from_native(native, context=self)
|
|
|
|
def hist_from_bin_count(
|
|
self, bin_count: int, *, include_breakpoint: bool
|
|
) -> PolarsDataFrame:
|
|
if bin_count == 0:
|
|
native = pl.DataFrame(schema=self._HIST_EMPTY_SCHEMA[include_breakpoint])
|
|
elif self.native.is_empty():
|
|
if include_breakpoint:
|
|
native = pl.select(
|
|
breakpoint=pl.int_range(1, bin_count + 1) / bin_count,
|
|
count=pl.lit(0, pl.Int64),
|
|
)
|
|
else:
|
|
native = pl.select(count=pl.zeros(bin_count, pl.Int64))
|
|
else:
|
|
count: int | None
|
|
if BACKEND_VERSION < (1, 15): # pragma: no cover
|
|
count = None
|
|
bins = self._bins_from_bin_count(bin_count=bin_count)
|
|
else:
|
|
count = bin_count
|
|
bins = None
|
|
return self._hist_from_data(
|
|
bins=bins, # type: ignore[arg-type]
|
|
bin_count=count,
|
|
include_breakpoint=include_breakpoint,
|
|
)
|
|
return self.__narwhals_namespace__()._dataframe.from_native(native, context=self)
|
|
|
|
def _bins_from_bin_count(self, bin_count: int) -> pl.Series: # pragma: no cover
|
|
"""Prepare bins based on backend version compatibility.
|
|
|
|
polars <1.15 does not adjust the bins when they have equivalent min/max
|
|
polars <1.5 with bin_count=...
|
|
returns bins that range from -inf to +inf and has bin_count + 1 bins.
|
|
for compat: convert `bin_count=` call to `bins=`
|
|
"""
|
|
from typing import cast
|
|
|
|
lower = cast("float", self.native.min())
|
|
upper = cast("float", self.native.max())
|
|
|
|
if lower == upper:
|
|
lower -= 0.5
|
|
upper += 0.5
|
|
|
|
width = (upper - lower) / bin_count
|
|
return pl.int_range(0, bin_count + 1, eager=True) * width + lower
|
|
|
|
def _hist_from_data(
|
|
self, bins: list[float] | None, bin_count: int | None, *, include_breakpoint: bool
|
|
) -> PolarsDataFrame:
|
|
"""Calculate histogram from non-empty data and post-process the results based on the backend version."""
|
|
from narwhals._polars.dataframe import PolarsDataFrame
|
|
|
|
series = self.native
|
|
|
|
# Polars inconsistently handles NaN values when computing histograms
|
|
# against predefined bins: https://github.com/pola-rs/polars/issues/21082
|
|
if BACKEND_VERSION < (1, 15) or bins is not None:
|
|
series = series.fill_nan(None)
|
|
|
|
df = series.hist(
|
|
bins,
|
|
bin_count=bin_count,
|
|
include_category=False,
|
|
include_breakpoint=include_breakpoint,
|
|
)
|
|
|
|
# Apply post-processing corrections
|
|
|
|
# Handle column naming
|
|
if not include_breakpoint:
|
|
col_name = df.columns[0]
|
|
df = df.select(pl.col(col_name).alias("count"))
|
|
elif BACKEND_VERSION < (1, 0): # pragma: no cover
|
|
df = df.rename({"break_point": "breakpoint"})
|
|
|
|
if bins is not None: # pragma: no cover
|
|
# polars<1.6 implicitly adds -inf and inf to either end of bins
|
|
if BACKEND_VERSION < (1, 6):
|
|
r = pl.int_range(0, len(df))
|
|
df = df.filter((r > 0) & (r < len(df) - 1))
|
|
# polars<1.27 makes the lowest bin a left/right closed interval
|
|
if BACKEND_VERSION < (1, 27):
|
|
df = (
|
|
df.slice(0, 1)
|
|
.with_columns(pl.col("count") + ((pl.lit(series) == bins[0]).sum()))
|
|
.vstack(df.slice(1))
|
|
)
|
|
|
|
return PolarsDataFrame.from_native(df, context=self)
|
|
|
|
def to_polars(self) -> pl.Series:
|
|
return self.native
|
|
|
|
@property
|
|
def dt(self) -> PolarsSeriesDateTimeNamespace:
|
|
return PolarsSeriesDateTimeNamespace(self)
|
|
|
|
@property
|
|
def str(self) -> PolarsSeriesStringNamespace:
|
|
return PolarsSeriesStringNamespace(self)
|
|
|
|
@property
|
|
def cat(self) -> PolarsSeriesCatNamespace:
|
|
return PolarsSeriesCatNamespace(self)
|
|
|
|
@property
|
|
def struct(self) -> PolarsSeriesStructNamespace:
|
|
return PolarsSeriesStructNamespace(self)
|
|
|
|
__add__: Method[Self]
|
|
__and__: Method[Self]
|
|
__floordiv__: Method[Self]
|
|
__invert__: Method[Self]
|
|
__iter__: Method[Iterator[Any]]
|
|
__mod__: Method[Self]
|
|
__mul__: Method[Self]
|
|
__or__: Method[Self]
|
|
__pow__: Method[Self]
|
|
__radd__: Method[Self]
|
|
__rand__: Method[Self]
|
|
__rfloordiv__: Method[Self]
|
|
__rmod__: Method[Self]
|
|
__rmul__: Method[Self]
|
|
__ror__: Method[Self]
|
|
__rsub__: Method[Self]
|
|
__rtruediv__: Method[Self]
|
|
__sub__: Method[Self]
|
|
__truediv__: Method[Self]
|
|
abs: Method[Self]
|
|
all: Method[bool]
|
|
any: Method[bool]
|
|
arg_max: Method[int]
|
|
arg_min: Method[int]
|
|
arg_true: Method[Self]
|
|
clip: Method[Self]
|
|
count: Method[int]
|
|
cum_max: Method[Self]
|
|
cum_min: Method[Self]
|
|
cum_prod: Method[Self]
|
|
cum_sum: Method[Self]
|
|
diff: Method[Self]
|
|
drop_nulls: Method[Self]
|
|
exp: Method[Self]
|
|
fill_null: Method[Self]
|
|
filter: Method[Self]
|
|
gather_every: Method[Self]
|
|
head: Method[Self]
|
|
is_between: Method[Self]
|
|
is_finite: Method[Self]
|
|
is_first_distinct: Method[Self]
|
|
is_in: Method[Self]
|
|
is_last_distinct: Method[Self]
|
|
is_null: Method[Self]
|
|
is_sorted: Method[bool]
|
|
is_unique: Method[Self]
|
|
item: Method[Any]
|
|
kurtosis: Method[float | None]
|
|
len: Method[int]
|
|
log: Method[Self]
|
|
max: Method[Any]
|
|
mean: Method[float]
|
|
min: Method[Any]
|
|
mode: Method[Self]
|
|
n_unique: Method[int]
|
|
null_count: Method[int]
|
|
quantile: Method[float]
|
|
rank: Method[Self]
|
|
round: Method[Self]
|
|
sample: Method[Self]
|
|
shift: Method[Self]
|
|
skew: Method[float | None]
|
|
sqrt: Method[Self]
|
|
std: Method[float]
|
|
sum: Method[float]
|
|
tail: Method[Self]
|
|
to_arrow: Method[pa.Array[Any]]
|
|
to_frame: Method[PolarsDataFrame]
|
|
to_list: Method[list[Any]]
|
|
to_pandas: Method[pd.Series[Any]]
|
|
unique: Method[Self]
|
|
var: Method[float]
|
|
zip_with: Method[Self]
|
|
|
|
@property
|
|
def list(self) -> PolarsSeriesListNamespace:
|
|
return PolarsSeriesListNamespace(self)
|
|
|
|
|
|
class PolarsSeriesDateTimeNamespace:
|
|
def __init__(self, series: PolarsSeries) -> None:
|
|
self._compliant_series = series
|
|
|
|
def __getattr__(self, attr: str) -> Any:
|
|
def func(*args: Any, **kwargs: Any) -> Any:
|
|
pos, kwds = extract_args_kwargs(args, kwargs)
|
|
return self._compliant_series._with_native(
|
|
getattr(self._compliant_series.native.dt, attr)(*pos, **kwds)
|
|
)
|
|
|
|
return func
|
|
|
|
|
|
class PolarsSeriesStringNamespace:
|
|
def __init__(self, series: PolarsSeries) -> None:
|
|
self._compliant_series = series
|
|
|
|
def zfill(self, width: int) -> PolarsSeries:
|
|
series = self._compliant_series
|
|
name = series.name
|
|
ns = series.__narwhals_namespace__()
|
|
return series.to_frame().select(ns.col(name).str.zfill(width)).get_column(name)
|
|
|
|
def __getattr__(self, attr: str) -> Any:
|
|
def func(*args: Any, **kwargs: Any) -> Any:
|
|
pos, kwds = extract_args_kwargs(args, kwargs)
|
|
return self._compliant_series._with_native(
|
|
getattr(self._compliant_series.native.str, attr)(*pos, **kwds)
|
|
)
|
|
|
|
return func
|
|
|
|
|
|
class PolarsSeriesCatNamespace:
|
|
def __init__(self, series: PolarsSeries) -> None:
|
|
self._compliant_series = series
|
|
|
|
def __getattr__(self, attr: str) -> Any:
|
|
def func(*args: Any, **kwargs: Any) -> Any:
|
|
pos, kwds = extract_args_kwargs(args, kwargs)
|
|
return self._compliant_series._with_native(
|
|
getattr(self._compliant_series.native.cat, attr)(*pos, **kwds)
|
|
)
|
|
|
|
return func
|
|
|
|
|
|
class PolarsSeriesListNamespace:
|
|
def __init__(self, series: PolarsSeries) -> None:
|
|
self._series = series
|
|
|
|
def len(self) -> PolarsSeries:
|
|
native_series = self._series.native
|
|
native_result = native_series.list.len()
|
|
|
|
if self._series._backend_version < (1, 16): # pragma: no cover
|
|
native_result = pl.select(
|
|
pl.when(~native_series.is_null()).then(native_result).otherwise(None)
|
|
)[native_series.name].cast(pl.UInt32())
|
|
|
|
elif self._series._backend_version < (1, 17): # pragma: no cover
|
|
native_result = native_series.cast(pl.UInt32())
|
|
|
|
return self._series._with_native(native_result)
|
|
|
|
# TODO(FBruzzesi): Remove `pragma: no cover` once other namespace methods are added
|
|
def __getattr__(self, attr: str) -> Any: # pragma: no cover
|
|
def func(*args: Any, **kwargs: Any) -> Any:
|
|
pos, kwds = extract_args_kwargs(args, kwargs)
|
|
return self._series._with_native(
|
|
getattr(self._series.native.list, attr)(*pos, **kwds)
|
|
)
|
|
|
|
return func
|
|
|
|
|
|
class PolarsSeriesStructNamespace:
|
|
def __init__(self, series: PolarsSeries) -> None:
|
|
self._compliant_series = series
|
|
|
|
def __getattr__(self, attr: str) -> Any:
|
|
def func(*args: Any, **kwargs: Any) -> Any:
|
|
pos, kwds = extract_args_kwargs(args, kwargs)
|
|
return self._compliant_series._with_native(
|
|
getattr(self._compliant_series.native.struct, attr)(*pos, **kwds)
|
|
)
|
|
|
|
return func
|