team-10/venv/Lib/site-packages/torch/testing/_internal/subclasses.py
2025-08-02 02:00:33 +02:00

78 lines
2.5 KiB
Python

# mypy: ignore-errors
from typing import Any, Optional
import torch
import torch.utils._pytree as pytree
from torch._subclasses.fake_tensor import is_fake
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils._python_dispatch import return_and_correct_aliasing
class WrapperSubclass(torch.Tensor):
@staticmethod
def __new__(cls, a, outer_size=None, outer_stride=None):
if outer_size is None:
outer_size = a.size()
if outer_stride is None:
outer_stride = a.stride()
kwargs = {}
kwargs["strides"] = outer_stride
kwargs["storage_offset"] = a.storage_offset()
kwargs["device"] = a.device
kwargs["layout"] = a.layout
kwargs["requires_grad"] = a.requires_grad
kwargs["dtype"] = a.dtype
out = torch.Tensor._make_wrapper_subclass(cls, outer_size, **kwargs)
return out
def __init__(self, a, outer_size=None, outer_stride=None):
self.a = a
def __repr__(self):
return f"WrapperSubclass({repr(self.a)})"
def __tensor_flatten__(self):
return ["a"], None
@staticmethod
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride):
assert meta is None
a = inner_tensors["a"]
if is_fake(a):
assert outer_size is not None
assert outer_stride is not None
return WrapperSubclass(a, outer_size, outer_stride)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if kwargs is None:
kwargs = {}
args_a = pytree.tree_map_only(WrapperSubclass, lambda x: x.a, args)
kwargs_a = pytree.tree_map_only(WrapperSubclass, lambda x: x.a, kwargs)
out_a = func(*args_a, **kwargs_a)
out_a_flat, spec = pytree.tree_flatten(out_a)
out_flat = [
WrapperSubclass(o_a) if isinstance(o_a, torch.Tensor) else o_a
for o_a in out_a_flat
]
out = pytree.tree_unflatten(out_flat, spec)
from torch._higher_order_ops.cond import cond_op
if func is cond_op:
return out
else:
return return_and_correct_aliasing(func, args, kwargs, out)
def __coerce_same_metadata_as_tangent__(
self, expected_metadata: Any, expected_type: Optional[type] = None
):
if expected_type == type(self.a):
return self.a
elif expected_type is TwoTensor:
return TwoTensor(self.a, self.a.clone())
return None