team-10/venv/Lib/site-packages/transformers/integrations/ggml.py
2025-08-02 02:00:33 +02:00

723 lines
27 KiB
Python

# coding=utf-8
# Copyright 2024 The ggml.ai team and The HuggingFace Inc. team. and pygguf author (github.com/99991)
# https://github.com/99991/pygguf
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integration with GGML / The file is copied and adapted from https://github.com/99991/pygguf
with extra methods beings exposed
"""
from array import array
import numpy as np
from tokenizers import Tokenizer, decoders, normalizers, pre_tokenizers, processors
from tokenizers.models import BPE, Unigram
from .. import AddedToken
from ..convert_slow_tokenizer import GemmaConverter, GPT2Converter, LlamaConverter, Qwen2Converter, T5Converter
from ..utils import logging
from ..utils.logging import tqdm
logger = logging.get_logger(__name__)
GGUF_CONFIG_MAPPING = {
"general": {
"architecture": "model_type",
"name": "_model_name_or_path",
},
"llama": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
# NOTE: rope.dimension_count==head_dim only suitable for llama/mistral
"rope.dimension_count": "head_dim",
"rope.freq_base": "rope_theta",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"vocab_size": "vocab_size",
},
"mistral": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
# NOTE: rope.dimension_count==head_dim only suitable for llama/mistral
"rope.dimension_count": "head_dim",
"rope.freq_base": "rope_theta",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"vocab_size": "vocab_size",
},
"qwen2": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"rope.freq_base": "rope_theta",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"vocab_size": "vocab_size",
},
"qwen2moe": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"rope.freq_base": "rope_theta",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"vocab_size": "vocab_size",
"expert_count": "num_experts",
"expert_used_count": "num_experts_per_tok",
},
"qwen3": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"rope.freq_base": "rope_theta",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"vocab_size": "vocab_size",
},
"falcon": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"rope.freq_base": "rope_theta",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"vocab_size": "vocab_size",
},
"tokenizer": {
"ggml.bos_token_id": "bos_token_id",
"ggml.eos_token_id": "eos_token_id",
"ggml.unknown_token_id": "unk_token_id",
"ggml.padding_token_id": "pad_token_id",
},
"phi3": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"rope.freq_base": "rope_theta",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"vocab_size": "vocab_size",
},
"bloom": {
"block_count": "n_layer",
"embedding_length": "hidden_size",
"attention.head_count": "n_head",
"vocab_size": "vocab_size",
"attention.layer_norm_epsilon": "layer_norm_epsilon",
},
"t5": {
"context_length": "n_positions",
"block_count": "num_layers",
"feed_forward_length": "d_ff",
"embedding_length": "d_model",
"attention.key_length": "d_kv",
"attention.head_count": "num_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_epsilon": "layer_norm_epsilon",
"attention.relative_buckets_count": "relative_attention_num_buckets",
"decoder_start_token_id": "decoder_start_token_id",
"vocab_size": "vocab_size",
},
"stablelm": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_epsilon": "layer_norm_eps",
"vocab_size": "vocab_size",
},
"gpt2": {
"block_count": "n_layer",
"context_length": "n_ctx",
"embedding_length": "n_embd",
"feed_forward_length": "feed_forward_length",
"attention.head_count": "n_head",
"attention.layer_norm_epsilon": "layer_norm_epsilon",
},
"starcoder2": {
"block_count": "num_hidden_layers",
"context_length": "max_position_embeddings",
"embedding_length": "hidden_size",
"feed_forward_length": "intermediate_size",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_epsilon": "norm_epsilon",
},
"mamba": {
"vocab_size": "vocab_size",
"context_length": "max_position_embeddings",
"embedding_length": "hidden_size",
"attention.layer_norm_rms_epsilon": "layer_norm_epsilon",
"block_count": "num_hidden_layers",
"ssm.conv_kernel": "conv_kernel",
"ssm.state_size": "state_size",
"ssm.time_step_rank": "time_step_rank",
"ssm.inner_size": "intermediate_size",
},
"nemotron": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"rope.freq_base": "rope_theta",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "norm_eps",
"vocab_size": "vocab_size",
},
"gemma2": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"rope.freq_base": "rope_theta",
# NOTE: Gemma2 has key_length==value_length==head_dim
# See: https://github.com/ggerganov/llama.cpp/blob/2e2f8f093cd4fb6bbb87ba84f6b9684fa082f3fa/convert_hf_to_gguf.py#L3293-L3294
"attention.key_length": "head_dim",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"attention.sliding_window": "sliding_window",
"vocab_size": "vocab_size",
},
"gemma3": {
"context_length": "max_position_embeddings",
"block_count": "num_hidden_layers",
"feed_forward_length": "intermediate_size",
"embedding_length": "hidden_size",
"rope.dimension_count": None,
"rope.freq_base": "rope_theta",
# NOTE: Gemma3 has key_length==value_length==head_dim
# See: https://github.com/ggml-org/llama.cpp/blob/fe5b78c89670b2f37ecb216306bed3e677b49d9f/convert_hf_to_gguf.py#L3495-L3496
"attention.key_length": "head_dim",
"attention.head_count": "num_attention_heads",
"attention.head_count_kv": "num_key_value_heads",
"attention.layer_norm_rms_epsilon": "rms_norm_eps",
"attention.sliding_window": "sliding_window",
"vocab_size": "vocab_size",
},
}
GGUF_TOKENIZER_MAPPING = {
"tokenizer": {
"ggml.model": "tokenizer_type",
"ggml.tokens": "tokens",
"ggml.scores": "scores",
"ggml.token_type": "token_type",
"ggml.merges": "merges",
"ggml.bos_token_id": "bos_token_id",
"ggml.eos_token_id": "eos_token_id",
"ggml.unknown_token_id": "unk_token_id",
"ggml.padding_token_id": "pad_token_id",
"ggml.add_space_prefix": "add_prefix_space",
},
"tokenizer_config": {
"chat_template": "chat_template",
"ggml.model": "model_type",
"ggml.bos_token_id": "bos_token_id",
"ggml.eos_token_id": "eos_token_id",
"ggml.unknown_token_id": "unk_token_id",
"ggml.padding_token_id": "pad_token_id",
},
}
def _gguf_parse_value(_value, data_type):
if not isinstance(data_type, list):
data_type = [data_type]
if len(data_type) == 1:
data_type = data_type[0]
array_data_type = None
else:
if data_type[0] != 9:
raise ValueError("Received multiple types, therefore expected the first type to indicate an array.")
data_type, array_data_type = data_type
if data_type in [0, 1, 2, 3, 4, 5, 10, 11]:
_value = int(_value[0])
elif data_type in [6, 12]:
_value = float(_value[0])
elif data_type in [7]:
_value = bool(_value[0])
elif data_type in [8]:
_value = array("B", list(_value)).tobytes().decode()
elif data_type in [9]:
_value = _gguf_parse_value(_value, array_data_type)
return _value
class GGUFTokenizerSkeleton:
def __init__(self, dict_):
for k, v in dict_.items():
setattr(self, k, v)
if not hasattr(self, "merges"):
if not hasattr(self, "tokens") or not hasattr(self, "scores"):
raise ValueError(
"tokens and scores need to be passed for a LLaMa tokenizer without merges to be instantiated."
)
tokens = self.tokens
scores = self.scores
vocab = {t: scores[i] for i, t in enumerate(tokens)}
logger.warning("Merges were not in checkpoint, building merges on the fly.")
merges = []
for merge, piece_score in tqdm(vocab.items()):
local = []
for index in range(1, len(merge)):
piece_l, piece_r = merge[:index], merge[index:]
if piece_l in tokens and piece_r in tokens:
local.append((piece_l, piece_r, piece_score))
local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]]), reverse=True)
merges.extend(local)
merges = sorted(merges, key=lambda val: val[2], reverse=True)
merges = [(val[0], val[1]) for val in merges]
self.merges = merges
else:
self.merges = [tuple(merge.split(" ")) for merge in self.merges]
if not hasattr(self, "scores"):
self.scores = [None for _ in range(len(self.tokens))]
if not hasattr(self, "added_tokens"):
self.added_tokens = []
if not hasattr(self, "unk_token_id"):
self.unk_token_id = None
# Llama2 uses the field `unknown_token_id`
if hasattr(self, "unknown_token_id") and self.unk_token_id is None:
self.unk_token_id = self.unknown_token_id
class GGUFLlamaConverter(LlamaConverter):
def __init__(self, tokenizer_dict):
self.proto = GGUFTokenizerSkeleton(tokenizer_dict)
self.original_tokenizer = self.proto
self.additional_kwargs = {}
self.is_llama_3_tokenizer = getattr(self.proto, "tokenizer_type", "llama") != "llama"
def vocab(self, proto):
return list(zip(proto.tokens, proto.scores))
def merges(self, proto):
return proto.merges
def tokenizer(self, proto):
vocab_scores = self.vocab(self.proto)
merges = self.merges(self.proto)
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
unk_token = proto.tokens[proto.unk_token_id] if proto.unk_token_id is not None else None
bos_token = proto.tokens[proto.bos_token_id] if getattr(proto, "bos_token_id", None) is not None else None
eos_token = proto.tokens[proto.bos_token_id] if getattr(proto, "eos_token_id", None) is not None else None
tokenizer = Tokenizer(
BPE(
bpe_vocab,
merges,
unk_token=unk_token,
fuse_unk=True,
byte_fallback=True,
)
)
special_tokens = []
if not hasattr(self.proto, "token_type"):
if unk_token is not None:
special_tokens.append(AddedToken(unk_token, normalized=False, special=True))
if bos_token is not None:
special_tokens.append(AddedToken(bos_token, normalized=False, special=True))
if eos_token is not None:
special_tokens.append(AddedToken(eos_token, normalized=False, special=True))
else:
# 3 stands for special tokens
special_tokens_idx = np.where(np.array(self.proto.token_type) == 3)[0]
for idx in special_tokens_idx:
special_tokens.append(AddedToken(self.proto.tokens[idx], normalized=False, special=True))
if len(special_tokens) != 0:
tokenizer.add_special_tokens(special_tokens)
if len(self.proto.added_tokens) != 0:
tokenizer.add_tokens(
[AddedToken(added_token, normalized=False, special=False) for added_token in self.proto.added_tokens]
)
self.additional_kwargs["unk_token"] = unk_token
self.additional_kwargs["eos_token"] = bos_token
self.additional_kwargs["bos_token"] = eos_token
if self.is_llama_3_tokenizer:
self.additional_kwargs["add_prefix_space"] = None
self.additional_kwargs["clean_up_tokenization_spaces"] = True
self.additional_kwargs["legacy"] = False
self.original_tokenizer.legacy = False
return tokenizer
def decoder(self, replacement, add_prefix_space):
sequence = [
decoders.ByteFallback(),
decoders.Fuse(),
decoders.Replace("", " "),
]
if self.is_llama_3_tokenizer:
sequence += [decoders.ByteLevel(add_prefix_space=False, trim_offsets=False, use_regex=True)]
if add_prefix_space:
sequence += [decoders.Strip(content=" ", left=1)]
return decoders.Sequence(sequence)
def converted(self):
# Copied partly from converted method in SpmConverter class
tokenizer = self.tokenizer(self.proto)
# Tokenizer assemble
normalizer = self.normalizer(self.proto)
if normalizer is not None:
tokenizer.normalizer = normalizer
replacement = ""
add_prefix_space = True
if hasattr(self.original_tokenizer, "add_prefix_space"):
add_prefix_space = self.original_tokenizer.add_prefix_space
pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space)
if pre_tokenizer is not None:
tokenizer.pre_tokenizer = pre_tokenizer
tokenizer.decoder = self.decoder(replacement, add_prefix_space)
post_processor = self.post_processor()
if post_processor:
tokenizer.post_processor = post_processor
# HACK: patch the llama-3 tokenizer to use the corresponding pre-tokenizer
# and normalizer
if self.is_llama_3_tokenizer:
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(
add_prefix_space=False, trim_offsets=False, use_regex=True
)
# This is tricky as the additional kwargs are passed after legacy is force-set in LlamaTokenizer's
# init.
tokenizer.normalizer = normalizers.Sequence([])
return tokenizer
class GGUFQwen2Converter(Qwen2Converter):
def __init__(self, tokenizer_dict):
self.original_tokenizer = GGUFTokenizerSkeleton(tokenizer_dict)
self.additional_kwargs = {}
def converted(self) -> Tokenizer:
vocab = {word: i for i, word in enumerate(self.original_tokenizer.tokens)}
merges = self.original_tokenizer.merges
tokenizer = super().converted(vocab, merges)
tokenizer.add_special_tokens(
[
AddedToken("<|endoftext|>", normalized=False, special=True),
AddedToken("<|im_start|>", normalized=False, special=True),
AddedToken("<|im_end|>", normalized=False, special=True),
]
)
return tokenizer
class GGUFPhi3Converter(LlamaConverter):
def __init__(self, tokenizer_dict):
self.proto = GGUFTokenizerSkeleton(tokenizer_dict)
self.original_tokenizer = self.proto
self.additional_kwargs = {}
def vocab(self, proto):
return list(zip(proto.tokens, proto.scores))
def merges(self, proto):
return proto.merges
def tokenizer(self, proto):
vocab_scores = self.vocab(self.proto)
merges = self.merges(self.proto)
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
tokenizer = Tokenizer(BPE(bpe_vocab, merges))
# add the special tokens from phi3 tokenizer config
tokenizer.add_special_tokens(
[
AddedToken("</s>", rstrip=True, lstrip=False, normalized=False, special=True),
AddedToken("<|endoftext|>", normalized=False, special=True),
AddedToken("<|assistant|>", rstrip=True, normalized=False, special=True),
AddedToken("<|placeholder1|>", rstrip=True, normalized=False, special=True),
AddedToken("<|placeholder2|>", rstrip=True, normalized=False, special=True),
AddedToken("<|placeholder3|>", rstrip=True, normalized=False, special=True),
AddedToken("<|placeholder4|>", rstrip=True, normalized=False, special=True),
AddedToken("<|system|>", rstrip=True, normalized=False, special=True),
AddedToken("<|end|>", rstrip=True, normalized=False, special=True),
AddedToken("<|placeholder5|>", rstrip=True, normalized=False, special=True),
AddedToken("<|placeholder6|>", rstrip=True, normalized=False, special=True),
AddedToken("<|user|>", rstrip=True, normalized=False, special=True),
]
)
self.additional_kwargs["unk_token"] = (
proto.tokens[proto.unk_token_id] if proto.unk_token_id is not None else None
)
self.additional_kwargs["eos_token"] = (
proto.tokens[proto.eos_token_id] if proto.eos_token_id is not None else None
)
self.additional_kwargs["bos_token"] = (
proto.tokens[proto.bos_token_id] if proto.bos_token_id is not None else None
)
self.additional_kwargs["pad_token"] = (
proto.tokens[proto.pad_token_id] if proto.pad_token_id is not None else None
)
return tokenizer
def decoder(self, replacement, add_prefix_space):
sequence = [
decoders.ByteFallback(),
decoders.Fuse(),
decoders.Replace(replacement, " "),
]
if add_prefix_space:
sequence += [decoders.Strip(content=" ", left=1)]
return decoders.Sequence(sequence)
def converted(self) -> Tokenizer:
tokenizer = self.tokenizer(self.proto)
replacement = ""
add_prefix_space = True
if hasattr(self.original_tokenizer, "add_prefix_space"):
add_prefix_space = self.original_tokenizer.add_prefix_space
tokenizer.decoder = self.decoder(replacement, add_prefix_space)
return tokenizer
class GGUFGPTConverter(GPT2Converter):
def __init__(self, tokenizer_dict):
self.original_tokenizer = GGUFTokenizerSkeleton(tokenizer_dict)
self.additional_kwargs = {}
def converted(self) -> Tokenizer:
vocab = {word: i for i, word in enumerate(self.original_tokenizer.tokens)}
merges = self.original_tokenizer.merges
tokenizer = super().converted(vocab, merges)
return tokenizer
class GGUFT5Converter(T5Converter):
def __init__(self, tokenizer_dict):
# set dummy data to avoid unnecessary merges calculation
tokenizer_dict["merges"] = ["dummy text"]
self.proto = GGUFTokenizerSkeleton(tokenizer_dict)
self.token2id = {k: v for v, k in enumerate(self.proto.tokens)}
self.original_tokenizer = self.proto
self.additional_kwargs = {}
def vocab(self, proto):
return list(zip(proto.tokens, proto.scores))
def normalizer(self, proto):
if getattr(self.original_tokenizer, "legacy", True):
sequence = []
if getattr(self.original_tokenizer, "add_prefix_space", True):
sequence += [normalizers.Prepend(prepend="")]
sequence += [normalizers.Replace(pattern=" ", content="")]
return normalizers.Sequence(sequence)
return None # non-legacy, no normalizer
def post_processor(self):
return processors.TemplateProcessing(
single=["$A", "</s>"],
pair=["$A", "</s>", "$B", "</s>"],
special_tokens=[
("</s>", self.token2id["</s>"]),
],
)
def converted(self) -> Tokenizer:
vocab_scores = self.vocab(self.proto)
tokenizer = Tokenizer(
Unigram(
vocab_scores,
unk_id=self.proto.unk_token_id,
byte_fallback=False,
)
)
# Tokenizer assemble
normalizer = self.normalizer(self.proto)
if normalizer is not None:
tokenizer.normalizer = normalizer
replacement = ""
add_prefix_space = True
if hasattr(self.original_tokenizer, "add_prefix_space"):
add_prefix_space = self.original_tokenizer.add_prefix_space
pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space)
if pre_tokenizer is not None:
tokenizer.pre_tokenizer = pre_tokenizer
tokenizer.decoder = self.decoder(replacement, add_prefix_space)
post_processor = self.post_processor()
if post_processor:
tokenizer.post_processor = post_processor
return tokenizer
class GGUFGemmaConverter(GemmaConverter):
def __init__(self, tokenizer_dict):
# set dummy data to avoid unnecessary merges calculation
tokenizer_dict["merges"] = ["dummy text"]
self.proto = GGUFTokenizerSkeleton(tokenizer_dict)
self.original_tokenizer = self.proto
self.additional_kwargs = {}
def vocab(self, proto):
original_vocab = list(zip(proto.tokens, proto.scores))
updated_vocab = []
for token, score in original_vocab:
if token == "<0x09>":
updated_vocab.append(("\t", score))
elif " " in token and len(token.strip()) == 0:
underscores = "" * len(token)
updated_vocab.append((underscores, score))
else:
updated_vocab.append((token, score))
return updated_vocab
def normalizer(self, proto):
return normalizers.Replace(" ", "")
def decoder(self, replacement, add_prefix_space):
sequence = [
decoders.Replace("", " "),
decoders.ByteFallback(),
decoders.Fuse(),
]
if add_prefix_space:
sequence += [decoders.Strip(content=" ", left=1)]
return decoders.Sequence(sequence)
def converted(self) -> Tokenizer:
vocab_scores = self.vocab(self.proto)
tokenizer = Tokenizer(
Unigram(
vocab_scores,
unk_id=self.proto.unk_token_id,
byte_fallback=self.handle_byte_fallback,
)
)
normalizer = self.normalizer(self.proto)
if normalizer is not None:
tokenizer.normalizer = normalizer
replacement = ""
add_prefix_space = True
if hasattr(self.original_tokenizer, "add_prefix_space"):
add_prefix_space = self.original_tokenizer.add_prefix_space
tokenizer.decoder = self.decoder(replacement, add_prefix_space)
pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space)
if pre_tokenizer is not None:
tokenizer.pre_tokenizer = pre_tokenizer
return tokenizer
GGUF_TO_FAST_CONVERTERS = {
"llama": GGUFLlamaConverter,
"qwen2": GGUFQwen2Converter,
"qwen2_moe": GGUFQwen2Converter,
"qwen3": GGUFQwen2Converter,
"phi3": GGUFPhi3Converter,
"bloom": GGUFGPTConverter,
"falcon": GGUFGPTConverter,
"stablelm": GGUFGPTConverter,
"gpt2": GGUFGPTConverter,
"starcoder2": GGUFGPTConverter,
"t5": GGUFT5Converter,
"mamba": GGUFGPTConverter,
"nemotron": GGUFGPTConverter,
"gemma2": GGUFGemmaConverter,
"gemma3_text": GGUFGemmaConverter,
}
def convert_gguf_tokenizer(architecture, tokenizer_dict) -> Tokenizer:
"""
Utilities to convert a slow tokenizer instance in a fast tokenizer instance.
Args:
architecture (`str`): The model architecture derived from gguf file.
transformer_tokenizer ([`~tokenization_utils_base.PreTrainedTokenizer`]):
Instance of a slow tokenizer to convert in the backend tokenizer for
[`~tokenization_utils_base.PreTrainedTokenizerFast`].
Return:
A instance of [`~tokenizers.Tokenizer`] to be used as the backend tokenizer of a
[`~tokenization_utils_base.PreTrainedTokenizerFast`]
"""
tokenizer_class_name = architecture
converter = GGUF_TO_FAST_CONVERTERS[tokenizer_class_name](tokenizer_dict)
fast_tokenizer = converter.converted()
return fast_tokenizer, converter.additional_kwargs