team-10/venv/Lib/site-packages/transformers/models/colpali/configuration_colpali.py
2025-08-02 02:00:33 +02:00

104 lines
4.3 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ColPali model configuration"""
import logging
from copy import deepcopy
from ...configuration_utils import PretrainedConfig
from ..auto import CONFIG_MAPPING, AutoConfig
logger = logging.getLogger(__name__)
class ColPaliConfig(PretrainedConfig):
r"""
Configuration class to store the configuration of a [`ColPaliForRetrieval`]. It is used to instantiate an instance
of `ColPaliForRetrieval` according to the specified arguments, defining the model architecture following the methodology
from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
Creating a configuration with the default settings will result in a configuration where the VLM backbone is set to the
default PaliGemma configuration, i.e the one from [vidore/colpali-v1.2](https://huggingface.co/vidore/colpali-v1.2).
Note that contrarily to what the class name suggests (actually the name refers to the ColPali **methodology**), you can
use a different VLM backbone model than PaliGemma by passing the corresponding VLM configuration to the class constructor.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vlm_config (`PretrainedConfig`, *optional*):
Configuration of the VLM backbone model.
text_config (`PretrainedConfig`, *optional*):
Configuration of the text backbone model. Overrides the `text_config` attribute of the `vlm_config` if provided.
embedding_dim (`int`, *optional*, defaults to 128):
Dimension of the multi-vector embeddings produced by the model.
Example:
```python
from transformers.models.colpali import ColPaliConfig, ColPaliForRetrieval
config = ColPaliConfig()
model = ColPaliForRetrieval(config)
```
"""
model_type = "colpali"
sub_configs = {"vlm_config": PretrainedConfig, "text_config": AutoConfig}
def __init__(
self,
vlm_config=None,
text_config=None,
embedding_dim: int = 128,
**kwargs,
):
if vlm_config is None:
vlm_config = CONFIG_MAPPING["paligemma"]()
logger.info(
"`vlm_config` is `None`. Initializing `vlm_config` with the `PaliGemmaConfig` with default values."
)
elif isinstance(vlm_config, dict):
vlm_config = deepcopy(vlm_config)
if "model_type" not in vlm_config:
raise KeyError(
"The `model_type` key is missing in the `vlm_config` dictionary. Please provide the model type."
)
elif vlm_config["model_type"] not in CONFIG_MAPPING:
raise ValueError(
f"The model type `{vlm_config['model_type']}` is not supported. Please provide a valid model type."
)
vlm_config = CONFIG_MAPPING[vlm_config["model_type"]](**vlm_config)
elif isinstance(vlm_config, PretrainedConfig):
vlm_config = vlm_config
else:
raise TypeError(
f"Invalid type for `vlm_config`. Expected `PretrainedConfig`, `dict`, or `None`, but got {type(vlm_config)}."
)
self.vlm_config = vlm_config
self.text_config = text_config if text_config is not None else vlm_config.text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma"
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
self.embedding_dim = embedding_dim
super().__init__(**kwargs)
__all__ = ["ColPaliConfig"]