team-10/venv/Lib/site-packages/transformers/models/colpali/modeling_colpali.py
2025-08-02 02:00:33 +02:00

214 lines
8.4 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ColPali model"""
from dataclasses import dataclass
from typing import Optional, Union
import torch
from torch import nn
from transformers import AutoModelForImageTextToText
from ...cache_utils import Cache
from ...modeling_utils import PreTrainedModel
from ...utils import ModelOutput, auto_docstring, can_return_tuple
from .configuration_colpali import ColPaliConfig
@auto_docstring
class ColPaliPreTrainedModel(PreTrainedModel):
config: ColPaliConfig
base_model_prefix = "model"
_no_split_modules = []
_supports_sdpa = True
_supports_flash_attn = True
_supports_flex_attn = True
def _init_weights(self, module):
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.vlm_config.text_config.initializer_range
)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@dataclass
@auto_docstring(
custom_intro="""
Base class for ColPali embeddings output.
"""
)
class ColPaliForRetrievalOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The embeddings of the model.
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
embeddings: Optional[torch.Tensor] = None
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
@auto_docstring(
custom_intro="""
The ColPali architecture leverages VLMs to construct efficient multi-vector embeddings directly
from document images (“screenshots”) for document retrieval. The model is trained to maximize the similarity
between these document embeddings and the corresponding query embeddings, using the late interaction method
introduced in ColBERT.
Using ColPali removes the need for potentially complex and brittle layout recognition and OCR pipelines with a
single model that can take into account both the textual and visual content (layout, charts, etc.) of a document.
ColPali is part of the ColVision model family, which was first introduced in the following paper:
[*ColPali: Efficient Document Retrieval with Vision Language Models*](https://huggingface.co/papers/2407.01449).
"""
)
class ColPaliForRetrieval(ColPaliPreTrainedModel):
_checkpoint_conversion_mapping = {
"vlm.language_model.model": "vlm.model.language_model",
"vlm.vision_tower": "vlm.model.vision_tower",
"vlm.multi_modal_projector": "vlm.model.multi_modal_projector",
"vlm.language_model.lm_head": "vlm.lm_head",
}
def __init__(self, config: ColPaliConfig):
super().__init__(config)
self.config = config
self.vocab_size = config.vlm_config.text_config.vocab_size
self.vlm = AutoModelForImageTextToText.from_config(config.vlm_config)
self._tied_weights_keys = [f"vlm.language_model.{k}" for k in (self.vlm._tied_weights_keys or [])]
self.embedding_dim = self.config.embedding_dim
self.embedding_proj_layer = nn.Linear(
self.config.vlm_config.text_config.hidden_size,
self.embedding_dim,
)
self.post_init()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> ColPaliForRetrievalOutput:
if pixel_values is not None:
pixel_values = pixel_values.to(dtype=self.dtype)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vlm_output = self.vlm.model(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True,
output_attentions=output_attentions,
**kwargs,
)
vlm_hidden_states = vlm_output.hidden_states if output_hidden_states else None
vlm_image_hidden_states = vlm_output.image_hidden_states if pixel_values is not None else None
last_hidden_states = vlm_output[0] # (batch_size, sequence_length, hidden_size)
embeddings = self.embedding_proj_layer(last_hidden_states) # (batch_size, sequence_length, dim)
# L2 normalization
embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
if attention_mask is not None:
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
return ColPaliForRetrievalOutput(
embeddings=embeddings,
past_key_values=vlm_output.past_key_values,
hidden_states=vlm_hidden_states,
attentions=vlm_output.attentions,
image_hidden_states=vlm_image_hidden_states,
)
def get_input_embeddings(self):
return self.vlm.get_input_embeddings()
def set_input_embeddings(self, value):
self.vlm.set_input_embeddings(value)
def get_output_embeddings(self):
return self.vlm.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.vlm.set_output_embeddings(new_embeddings)
def tie_weights(self):
return self.vlm.tie_weights()
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
mean_resizing: bool = True,
) -> nn.Embedding:
model_embeds = self.vlm.resize_token_embeddings(
new_num_tokens=new_num_tokens,
pad_to_multiple_of=pad_to_multiple_of,
mean_resizing=mean_resizing,
)
self.config.vlm_config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vlm_config.vocab_size = model_embeds.num_embeddings
self.vlm.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
__all__ = [
"ColPaliForRetrieval",
"ColPaliPreTrainedModel",
]