team-10/venv/Lib/site-packages/transformers/models/csm/configuration_csm.py
2025-08-02 02:00:33 +02:00

440 lines
23 KiB
Python

# coding=utf-8
# Copyright 2025 Sesame and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
logger = logging.get_logger(__name__)
class CsmDepthDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CsmDepthDecoderModel`]. It is used to instantiate an CSM depth decoder
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield
a similar configuration to that of the csm-1b.
e.g. [sesame/csm-1b](https://huggingface.co/sesame/csm-1b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_codebooks (`int`, *optional*, defaults to 32):
Number of codebooks used in the underlying codec model responsible for tokenizing the audio.
backbone_hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations of the backbone model used with this depth decoder.
vocab_size (`int`, *optional*, defaults to 2051):
Vocabulary size of the CsmDepthDecoder model. Defines the number of different audio tokens that can be represented by each codebook.
hidden_size (`int`, *optional*, defaults to 1024):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 4):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 2):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 33):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 2050):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*):
End of stream token id.
rope_theta (`float`, *optional*, defaults to 500000):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
```python
>>> from transformers import CsmDepthDecoder, CsmDepthDecoderConfig
>>> # Initializing a CsmDepthDecoder
>>> configuration = CsmDepthDecoderConfig()
>>> model = CsmDepthDecoderModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "csm_depth_decoder_model"
base_config_key = "depth_decoder_config"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
num_codebooks=32,
backbone_hidden_size=2048,
vocab_size=2051,
hidden_size=1024,
intermediate_size=8192,
num_hidden_layers=4,
num_attention_heads=8,
num_key_value_heads=2,
hidden_act="silu",
max_position_embeddings=33,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=None,
eos_token_id=None,
rope_theta=500000,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
head_dim=None,
**kwargs,
):
if kwargs.pop("tie_word_embeddings", False):
raise ValueError("`tie_word_embeddings=True` is not supported for CsmDepthDecoderConfig")
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=False,
**kwargs,
)
self.num_codebooks = num_codebooks
self.vocab_size = vocab_size
self.backbone_hidden_size = backbone_hidden_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
class CsmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CsmForConditionalGeneration`]. It is used to instantiate an CSM
model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the csm-1b.
e.g. [sesame/csm-1b](https://huggingface.co/sesame/csm-1b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_codebooks (`int`, *optional*, defaults to 32):
Number of codebooks used in the underlying codec model responsible for tokenizing the audio.
vocab_size (`int`, *optional*, defaults to 2051):
Vocabulary size of the Csm model. Defines the number of different audio tokens that can be represented by each codebook.
text_vocab_size (`int`, *optional*, defaults to 128256):
Vocabulary size of the text input for the Csm model. Defines the number of different text tokens that can be represented.
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations of the backbone model.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations of the backbone model.
num_hidden_layers (`int`, *optional*, defaults to 16):
Number of hidden layers in the backbone model Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the backbone model Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245).
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the backbone model Transformer decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 128002):
Padding token id.
codebook_pad_token_id (`int`, *optional*, defaults to 2050):
Padding token id for codebook tokens.
codebook_eos_token_id (`int`, *optional*, defaults to 0):
End of stream token id for codebook tokens.
bos_token_id (`int`, *optional*, defaults to 128000):
Beginning of stream token id.
eos_token_id (`int`, *optional*):
End of stream token id.
audio_token_id (`int`, *optional*, defaults to 128002):
Audio token id in the text input.
audio_eos_token_id (`int`, *optional*, defaults to 128003):
End of stream token id for audio in the text input.
rope_theta (`float`, *optional*, defaults to 500000):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*, defaults to `{'factor': 32.0, 'high_freq_factor': 0.5, 'low_freq_factor': 0.125, 'original_max_position_embeddings': 1024, 'rope_type': 'llama3'}`):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
tie_codebooks_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie the codebook tokens embeddings of the backbone model to the codebook tokens embeddings of the depth decoder.
depth_decoder_config (`CsmDepthDecoderConfig`, *optional*):
Configuration for the depth decoder.
codec_config (`PretrainedConfig`, *optional*):
Configuration for the codec.
```python
>>> from transformers import CsmForConditionalGeneration, CsmConfig
>>> # Initializing a CsmConfig
>>> configuration = CsmConfig()
>>> # Initializing a model
>>> model = CsmForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "csm"
base_config_key = "csm_config"
keys_to_ignore_at_inference = ["past_key_values"]
sub_configs = {
"codec_config": AutoConfig,
"depth_decoder_config": CsmDepthDecoderConfig,
}
def __init__(
self,
num_codebooks=32,
vocab_size=2051,
text_vocab_size=128256,
hidden_size=2048,
intermediate_size=8192,
num_hidden_layers=16,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=128002,
codebook_pad_token_id=2050,
codebook_eos_token_id=0,
bos_token_id=128000,
eos_token_id=None,
audio_token_id=128002,
audio_eos_token_id=128003,
rope_theta=500000,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
head_dim=None,
tie_codebooks_embeddings=True,
depth_decoder_config=None,
codec_config=None,
**kwargs,
):
if kwargs.pop("tie_word_embeddings", False):
raise ValueError("`tie_word_embeddings=True` is not supported for CsmConfig")
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=False,
**kwargs,
)
if depth_decoder_config is None:
self.depth_decoder_config = CsmDepthDecoderConfig()
logger.info("depth_decoder_config is None, using default depth decoder config.")
elif isinstance(depth_decoder_config, dict):
self.depth_decoder_config = CsmDepthDecoderConfig(**depth_decoder_config)
elif isinstance(depth_decoder_config, CsmDepthDecoderConfig):
self.depth_decoder_config = depth_decoder_config
if codec_config is None:
self.codec_config = AutoConfig.for_model("mimi")
logger.info("codec_config is None, using default audio encoder config.")
elif isinstance(codec_config, dict):
self.codec_config = AutoConfig.for_model(**codec_config)
elif isinstance(codec_config, PretrainedConfig):
self.codec_config = codec_config
self.text_vocab_size = text_vocab_size
self.num_codebooks = num_codebooks
self.audio_token_id = audio_token_id
self.audio_eos_token_id = audio_eos_token_id
self.codebook_pad_token_id = codebook_pad_token_id
self.codebook_eos_token_id = codebook_eos_token_id
self.tie_codebooks_embeddings = tie_codebooks_embeddings
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
__all__ = [
"CsmDepthDecoderConfig",
"CsmConfig",
]