team-10/venv/Lib/site-packages/transformers/models/dac/configuration_dac.py
2025-08-02 02:00:33 +02:00

114 lines
4.5 KiB
Python

# coding=utf-8
# Copyright 2024 Descript and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dac model configuration"""
import math
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class DacConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`DacModel`]. It is used to instantiate a
Dac model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[descript/dac_16khz](https://huggingface.co/descript/dac_16khz) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
encoder_hidden_size (`int`, *optional*, defaults to 64):
Intermediate representation dimension for the encoder.
downsampling_ratios (`list[int]`, *optional*, defaults to `[2, 4, 8, 8]`):
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
decoder_hidden_size (`int`, *optional*, defaults to 1536):
Intermediate representation dimension for the decoder.
n_codebooks (`int`, *optional*, defaults to 9):
Number of codebooks in the VQVAE.
codebook_size (`int`, *optional*, defaults to 1024):
Number of discrete codes in each codebook.
codebook_dim (`int`, *optional*, defaults to 8):
Dimension of the codebook vectors. If not defined, uses `encoder_hidden_size`.
quantizer_dropout (`bool`, *optional*, defaults to 0):
Whether to apply dropout to the quantizer.
commitment_loss_weight (float, *optional*, defaults to 0.25):
Weight of the commitment loss term in the VQVAE loss function.
codebook_loss_weight (float, *optional*, defaults to 1.0):
Weight of the codebook loss term in the VQVAE loss function.
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
Example:
```python
>>> from transformers import DacModel, DacConfig
>>> # Initializing a "descript/dac_16khz" style configuration
>>> configuration = DacConfig()
>>> # Initializing a model (with random weights) from the "descript/dac_16khz" style configuration
>>> model = DacModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "dac"
def __init__(
self,
encoder_hidden_size=64,
downsampling_ratios=[2, 4, 8, 8],
decoder_hidden_size=1536,
n_codebooks=9,
codebook_size=1024,
codebook_dim=8,
quantizer_dropout=0,
commitment_loss_weight=0.25,
codebook_loss_weight=1.0,
sampling_rate=16000,
**kwargs,
):
self.encoder_hidden_size = encoder_hidden_size
self.downsampling_ratios = downsampling_ratios
self.decoder_hidden_size = decoder_hidden_size
self.upsampling_ratios = downsampling_ratios[::-1]
self.n_codebooks = n_codebooks
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.quantizer_dropout = quantizer_dropout
self.sampling_rate = sampling_rate
self.hidden_size = encoder_hidden_size * (2 ** len(downsampling_ratios))
self.hop_length = int(np.prod(downsampling_ratios))
self.commitment_loss_weight = commitment_loss_weight
self.codebook_loss_weight = codebook_loss_weight
super().__init__(**kwargs)
@property
def frame_rate(self) -> int:
hop_length = np.prod(self.upsampling_ratios)
return math.ceil(self.sampling_rate / hop_length)
__all__ = ["DacConfig"]