team-10/venv/Lib/site-packages/transformers/models/efficientloftr/configuration_efficientloftr.py
2025-08-02 02:00:33 +02:00

203 lines
10 KiB
Python

# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class EfficientLoFTRConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`EffientLoFTRFromKeypointMatching`].
It is used to instantiate a EfficientLoFTR model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
EfficientLoFTR [zju-community/efficientloftr](https://huggingface.co/zju-community/efficientloftr) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
stage_num_blocks (`List`, *optional*, defaults to [1, 2, 4, 14]):
The number of blocks in each stages
out_features (`List`, *optional*, defaults to [64, 64, 128, 256]):
The number of channels in each stage
stage_stride (`List`, *optional*, defaults to [2, 1, 2, 2]):
The stride used in each stage
hidden_size (`int`, *optional*, defaults to 256):
The dimension of the descriptors.
activation_function (`str`, *optional*, defaults to `"relu"`):
The activation function used in the backbone
q_aggregation_kernel_size (`int`, *optional*, defaults to 4):
The kernel size of the aggregation of query states in the fusion network
kv_aggregation_kernel_size (`int`, *optional*, defaults to 4):
The kernel size of the aggregation of key and value states in the fusion network
q_aggregation_stride (`int`, *optional*, defaults to 4):
The stride of the aggregation of query states in the fusion network
kv_aggregation_stride (`int`, *optional*, defaults to 4):
The stride of the aggregation of key and value states in the fusion network
num_attention_layers (`int`, *optional*, defaults to 4):
Number of attention layers in the LocalFeatureTransformer
num_attention_heads (`int`, *optional*, defaults to 8):
The number of heads in the GNN layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during attention.
mlp_activation_function (`str`, *optional*, defaults to `"leaky_relu"`):
Activation function used in the attention mlp layer.
coarse_matching_skip_softmax (`bool`, *optional*, defaults to `False`):
Whether to skip softmax or not at the coarse matching step.
coarse_matching_threshold (`float`, *optional*, defaults to 0.2):
The threshold for the minimum score required for a match.
coarse_matching_temperature (`float`, *optional*, defaults to 0.1):
The temperature to apply to the coarse similarity matrix
coarse_matching_border_removal (`int`, *optional*, defaults to 2):
The size of the border to remove during coarse matching
fine_kernel_size (`int`, *optional*, defaults to 8):
Kernel size used for the fine feature matching
batch_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the batch normalization layers.
embedding_size (`List`, *optional*, defaults to [15, 20]):
The size (height, width) of the embedding for the position embeddings.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
partial_rotary_factor (`float`, *optional*, defaults to 4.0):
Dim factor for the RoPE embeddings, in EfficientLoFTR, frequencies should be generated for
the whole hidden_size, so this factor is used to compensate.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3', '2d'], with 'default' being the original RoPE implementation.
`dim` (`int`): The dimension of the RoPE embeddings.
fine_matching_slice_dim (`int`, *optional*, defaults to 8):
The size of the slice used to divide the fine features for the first and second fine matching stages.
fine_matching_regress_temperature (`float`, *optional*, defaults to 10.0):
The temperature to apply to the fine similarity matrix
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Examples:
```python
>>> from transformers import EfficientLoFTRConfig, EfficientLoFTRForKeypointMatching
>>> # Initializing a EfficientLoFTR configuration
>>> configuration = EfficientLoFTRConfig()
>>> # Initializing a model from the EfficientLoFTR configuration
>>> model = EfficientLoFTRForKeypointMatching(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "efficientloftr"
def __init__(
self,
stage_num_blocks: Optional[list[int]] = None,
out_features: Optional[list[int]] = None,
stage_stride: Optional[list[int]] = None,
hidden_size: int = 256,
activation_function: str = "relu",
q_aggregation_kernel_size: int = 4,
kv_aggregation_kernel_size: int = 4,
q_aggregation_stride: int = 4,
kv_aggregation_stride: int = 4,
num_attention_layers: int = 4,
num_attention_heads: int = 8,
attention_dropout: float = 0.0,
attention_bias: bool = False,
mlp_activation_function: str = "leaky_relu",
coarse_matching_skip_softmax: bool = False,
coarse_matching_threshold: float = 0.2,
coarse_matching_temperature: float = 0.1,
coarse_matching_border_removal: int = 2,
fine_kernel_size: int = 8,
batch_norm_eps: float = 1e-5,
embedding_size: Optional[list[int]] = None,
rope_theta: float = 10000.0,
partial_rotary_factor: float = 4.0,
rope_scaling: Optional[dict] = None,
fine_matching_slice_dim: int = 8,
fine_matching_regress_temperature: float = 10.0,
initializer_range: float = 0.02,
**kwargs,
):
# Stage level of RepVGG
self.stage_num_blocks = stage_num_blocks if stage_num_blocks is not None else [1, 2, 4, 14]
self.stage_stride = stage_stride if stage_stride is not None else [2, 1, 2, 2]
self.out_features = out_features if out_features is not None else [64, 64, 128, 256]
self.stage_in_channels = [1] + self.out_features[:-1]
# Block level of RepVGG
self.stage_block_stride = [
[stride] + [1] * (num_blocks - 1) for stride, num_blocks in zip(self.stage_stride, self.stage_num_blocks)
]
self.stage_block_out_channels = [
[self.out_features[stage_idx]] * num_blocks for stage_idx, num_blocks in enumerate(self.stage_num_blocks)
]
self.stage_block_in_channels = [
[self.stage_in_channels[stage_idx]] + self.stage_block_out_channels[stage_idx][:-1]
for stage_idx in range(len(self.stage_num_blocks))
]
# Fine matching level of EfficientLoFTR
self.fine_fusion_dims = list(reversed(self.out_features))[:-1]
self.hidden_size = hidden_size
if self.hidden_size != self.out_features[-1]:
raise ValueError(
f"hidden_size should be equal to the last value in out_features. hidden_size = {self.hidden_size}, out_features = {self.stage_out_channels}"
)
self.activation_function = activation_function
self.q_aggregation_kernel_size = q_aggregation_kernel_size
self.kv_aggregation_kernel_size = kv_aggregation_kernel_size
self.q_aggregation_stride = q_aggregation_stride
self.kv_aggregation_stride = kv_aggregation_stride
self.num_attention_layers = num_attention_layers
self.num_attention_heads = num_attention_heads
self.attention_dropout = attention_dropout
self.attention_bias = attention_bias
self.intermediate_size = self.hidden_size * 2
self.mlp_activation_function = mlp_activation_function
self.coarse_matching_skip_softmax = coarse_matching_skip_softmax
self.coarse_matching_threshold = coarse_matching_threshold
self.coarse_matching_temperature = coarse_matching_temperature
self.coarse_matching_border_removal = coarse_matching_border_removal
self.fine_kernel_size = fine_kernel_size
self.batch_norm_eps = batch_norm_eps
self.fine_matching_slice_dim = fine_matching_slice_dim
self.fine_matching_regress_temperature = fine_matching_regress_temperature
self.num_key_value_heads = num_attention_heads
self.embedding_size = embedding_size if embedding_size is not None else [15, 20]
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling if rope_scaling is not None else {"rope_type": "default"}
# for compatibility with "default" rope type
self.partial_rotary_factor = partial_rotary_factor
rope_config_validation(self)
self.initializer_range = initializer_range
super().__init__(**kwargs)
__all__ = ["EfficientLoFTRConfig"]