team-10/venv/Lib/site-packages/transformers/models/eomt/configuration_eomt.py
2025-08-02 02:00:33 +02:00

168 lines
7.9 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/eomt/modular_eomt.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_eomt.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Mobile Perception Systems Lab at TU/e and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
class EomtConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`EomtForUniversalSegmentation`]. It is used to instantiate an EoMT model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the EoMT
[tue-mps/coco_panoptic_eomt_large_640](https://huggingface.co/tue-mps/coco_panoptic_eomt_large_640)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the hidden representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads in each attention layer.
mlp_ratio (`int`, *optional*, defaults to 4):
Ratio of the MLP hidden dimensionality to the hidden size.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 640):
The size (resolution) of each input image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
layerscale_value (`float`, *optional*, defaults to 1.0):
Initial value for the LayerScale parameter.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The stochastic depth rate (drop path) used during training.
num_upscale_blocks (`int`, *optional*, defaults to 2):
Number of upsampling blocks used in the decoder or segmentation head.
attention_dropout (`float`, *optional*, defaults to 0.0):
Dropout probability applied after attention projection.
use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
Whether to use the SwiGLU feedforward neural network.
num_blocks (`int`, *optional*, defaults to 4):
Number of feature blocks or stages in the architecture.
no_object_weight (`float`, *optional*, defaults to 0.1):
Loss weight for the 'no object' class in panoptic/instance segmentation.
class_weight (`float`, *optional*, defaults to 2.0):
Loss weight for classification targets.
mask_weight (`float`, *optional*, defaults to 5.0):
Loss weight for mask prediction.
dice_weight (`float`, *optional*, defaults to 5.0):
Loss weight for the dice loss component.
train_num_points (`int`, *optional*, defaults to 12544):
Number of points to sample for mask loss computation during training.
oversample_ratio (`float`, *optional*, defaults to 3.0):
Oversampling ratio used in point sampling for mask training.
importance_sample_ratio (`float`, *optional*, defaults to 0.75):
Ratio of points to sample based on importance during training.
num_queries (`int`, *optional*, defaults to 200):
Number of object queries in the Transformer.
num_register_tokens (`int`, *optional*, defaults to 4):
Number of learnable register tokens added to the transformer input.
Example:
```python
>>> from transformers import EomtConfig, EomtForUniversalSegmentation
>>> # Initialize configuration
>>> config = EomtConfig()
>>> # Initialize model
>>> model = EomtForUniversalSegmentation(config)
>>> # Access config
>>> config = model.config
```"""
model_type = "eomt"
def __init__(
self,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
mlp_ratio=4,
hidden_act="gelu",
hidden_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
image_size=640,
patch_size=16,
num_channels=3,
layerscale_value=1.0,
drop_path_rate=0.0,
num_upscale_blocks=2,
attention_dropout=0.0,
use_swiglu_ffn=False,
num_blocks=4,
no_object_weight: float = 0.1,
class_weight: float = 2.0,
mask_weight: float = 5.0,
dice_weight: float = 5.0,
train_num_points: int = 12544,
oversample_ratio: float = 3.0,
importance_sample_ratio: float = 0.75,
num_queries=200,
num_register_tokens=4,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.mlp_ratio = mlp_ratio
self.attention_dropout = attention_dropout
self.layerscale_value = layerscale_value
self.drop_path_rate = drop_path_rate
self.num_upscale_blocks = num_upscale_blocks
self.use_swiglu_ffn = use_swiglu_ffn
self.num_blocks = num_blocks
self.no_object_weight = no_object_weight
self.class_weight = class_weight
self.mask_weight = mask_weight
self.dice_weight = dice_weight
self.train_num_points = train_num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
self.num_queries = num_queries
self.num_register_tokens = num_register_tokens
__all__ = ["EomtConfig"]