539 lines
23 KiB
Python
539 lines
23 KiB
Python
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||
# This file was automatically generated from src/transformers/models/exaone4/modular_exaone4.py.
|
||
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
||
# the file from the modular. If any change should be done, please apply the change to the
|
||
# modular_exaone4.py file directly. One of our CI enforces this.
|
||
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
||
# coding=utf-8
|
||
# Copyright 2025 The LG AI Research and HuggingFace Inc. team. All rights reserved.
|
||
#
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
from typing import Callable, Optional, Union
|
||
|
||
import torch
|
||
from torch import nn
|
||
|
||
from transformers.utils.generic import check_model_inputs
|
||
|
||
from ...activations import ACT2FN
|
||
from ...cache_utils import Cache, DynamicCache
|
||
from ...generation import GenerationMixin
|
||
from ...integrations import use_kernel_forward_from_hub
|
||
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
|
||
from ...modeling_layers import (
|
||
GenericForQuestionAnswering,
|
||
GenericForSequenceClassification,
|
||
GenericForTokenClassification,
|
||
GradientCheckpointingLayer,
|
||
)
|
||
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
||
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
||
from ...processing_utils import Unpack
|
||
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
|
||
from .configuration_exaone4 import Exaone4Config
|
||
|
||
|
||
@use_kernel_forward_from_hub("RMSNorm")
|
||
class Exaone4RMSNorm(nn.Module):
|
||
def __init__(self, hidden_size, eps=1e-6):
|
||
"""
|
||
Exaone4RMSNorm is equivalent to T5LayerNorm
|
||
"""
|
||
super().__init__()
|
||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||
self.variance_epsilon = eps
|
||
|
||
def forward(self, hidden_states):
|
||
input_dtype = hidden_states.dtype
|
||
hidden_states = hidden_states.to(torch.float32)
|
||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||
return self.weight * hidden_states.to(input_dtype)
|
||
|
||
def extra_repr(self):
|
||
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
||
|
||
|
||
class Exaone4RotaryEmbedding(nn.Module):
|
||
def __init__(self, config: Exaone4Config, device=None):
|
||
super().__init__()
|
||
# BC: "rope_type" was originally "type"
|
||
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
||
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
||
else:
|
||
self.rope_type = "default"
|
||
self.max_seq_len_cached = config.max_position_embeddings
|
||
self.original_max_seq_len = config.max_position_embeddings
|
||
|
||
self.config = config
|
||
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
||
|
||
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||
self.original_inv_freq = self.inv_freq
|
||
|
||
@torch.no_grad()
|
||
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
||
def forward(self, x, position_ids):
|
||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
||
position_ids_expanded = position_ids[:, None, :].float()
|
||
|
||
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
||
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||
emb = torch.cat((freqs, freqs), dim=-1)
|
||
cos = emb.cos() * self.attention_scaling
|
||
sin = emb.sin() * self.attention_scaling
|
||
|
||
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
||
|
||
|
||
def rotate_half(x):
|
||
"""Rotates half the hidden dims of the input."""
|
||
x1 = x[..., : x.shape[-1] // 2]
|
||
x2 = x[..., x.shape[-1] // 2 :]
|
||
return torch.cat((-x2, x1), dim=-1)
|
||
|
||
|
||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
||
"""Applies Rotary Position Embedding to the query and key tensors.
|
||
|
||
Args:
|
||
q (`torch.Tensor`): The query tensor.
|
||
k (`torch.Tensor`): The key tensor.
|
||
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
||
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
||
position_ids (`torch.Tensor`, *optional*):
|
||
Deprecated and unused.
|
||
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
||
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
||
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
||
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
||
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
||
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
||
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
||
Returns:
|
||
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
||
"""
|
||
cos = cos.unsqueeze(unsqueeze_dim)
|
||
sin = sin.unsqueeze(unsqueeze_dim)
|
||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||
return q_embed, k_embed
|
||
|
||
|
||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||
"""
|
||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||
"""
|
||
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||
if n_rep == 1:
|
||
return hidden_states
|
||
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
||
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||
|
||
|
||
def eager_attention_forward(
|
||
module: nn.Module,
|
||
query: torch.Tensor,
|
||
key: torch.Tensor,
|
||
value: torch.Tensor,
|
||
attention_mask: Optional[torch.Tensor],
|
||
scaling: float,
|
||
dropout: float = 0.0,
|
||
**kwargs: Unpack[TransformersKwargs],
|
||
):
|
||
key_states = repeat_kv(key, module.num_key_value_groups)
|
||
value_states = repeat_kv(value, module.num_key_value_groups)
|
||
|
||
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
||
if attention_mask is not None:
|
||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||
attn_weights = attn_weights + causal_mask
|
||
|
||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
||
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
||
attn_output = torch.matmul(attn_weights, value_states)
|
||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
||
return attn_output, attn_weights
|
||
|
||
|
||
class Exaone4Attention(nn.Module):
|
||
def __init__(self, config: Exaone4Config, layer_idx: int):
|
||
super().__init__()
|
||
self.config = config
|
||
self.layer_idx = layer_idx
|
||
self.num_attention_heads = config.num_attention_heads
|
||
self.num_key_value_heads = config.num_key_value_heads
|
||
self.hidden_size = config.hidden_size
|
||
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
||
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
||
self.attention_dropout = config.attention_dropout
|
||
self.is_causal = True
|
||
self.scaling = self.head_dim**-0.5
|
||
self.sliding_window = config.sliding_window
|
||
self.sliding_window_pattern = config.sliding_window_pattern
|
||
self.is_sliding = config.layer_types[layer_idx] == "sliding_attention"
|
||
|
||
self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
|
||
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||
self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, self.hidden_size, bias=False)
|
||
|
||
self.q_norm = Exaone4RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
||
self.k_norm = Exaone4RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
past_key_value: Optional[Cache] = None,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
**kwargs: Unpack[TransformersKwargs],
|
||
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
||
input_shape = hidden_states.shape[:-1]
|
||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||
|
||
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
||
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
||
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
||
|
||
# We use QK-norm
|
||
query_states = self.q_norm(query_states)
|
||
key_states = self.k_norm(key_states)
|
||
|
||
cos, sin = position_embeddings
|
||
# We use global NoPE for hybrid attention model
|
||
if self.sliding_window is None or self.is_sliding:
|
||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||
|
||
if past_key_value is not None:
|
||
cache_kwargs = {
|
||
"cache_position": cache_position,
|
||
}
|
||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||
|
||
attention_interface: Callable = eager_attention_forward
|
||
if self.config._attn_implementation != "eager":
|
||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||
|
||
attn_output, attn_weights = attention_interface(
|
||
self,
|
||
query_states,
|
||
key_states,
|
||
value_states,
|
||
attention_mask,
|
||
dropout=0.0 if not self.training else self.attention_dropout,
|
||
scaling=self.scaling,
|
||
sliding_window=self.sliding_window if self.is_sliding else None,
|
||
**kwargs,
|
||
)
|
||
|
||
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
||
attn_output = self.o_proj(attn_output)
|
||
return attn_output, attn_weights
|
||
|
||
|
||
class Exaone4MLP(nn.Module):
|
||
def __init__(self, config):
|
||
super().__init__()
|
||
self.config = config
|
||
self.hidden_size = config.hidden_size
|
||
self.intermediate_size = config.intermediate_size
|
||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||
self.act_fn = ACT2FN[config.hidden_act]
|
||
|
||
def forward(self, x):
|
||
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||
return down_proj
|
||
|
||
|
||
class Exaone4DecoderLayer(GradientCheckpointingLayer):
|
||
def __init__(self, config: Exaone4Config, layer_idx: int):
|
||
super().__init__()
|
||
self.hidden_size = config.hidden_size
|
||
self.self_attn = Exaone4Attention(config=config, layer_idx=layer_idx)
|
||
|
||
self.mlp = Exaone4MLP(config)
|
||
self.post_attention_layernorm = Exaone4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
self.post_feedforward_layernorm = Exaone4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
past_key_value: Optional[Cache] = None,
|
||
use_cache: Optional[bool] = False,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
||
**kwargs: Unpack[TransformersKwargs],
|
||
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||
residual = hidden_states
|
||
hidden_states, _ = self.self_attn(
|
||
hidden_states=hidden_states,
|
||
attention_mask=attention_mask,
|
||
position_ids=position_ids,
|
||
past_key_value=past_key_value,
|
||
use_cache=use_cache,
|
||
cache_position=cache_position,
|
||
position_embeddings=position_embeddings,
|
||
**kwargs,
|
||
)
|
||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||
hidden_states = residual + hidden_states
|
||
|
||
# Fully Connected
|
||
residual = hidden_states
|
||
hidden_states = self.mlp(hidden_states)
|
||
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
||
hidden_states = residual + hidden_states
|
||
return hidden_states
|
||
|
||
|
||
@auto_docstring
|
||
class Exaone4PreTrainedModel(PreTrainedModel):
|
||
config: Exaone4Config
|
||
base_model_prefix = "model"
|
||
supports_gradient_checkpointing = True
|
||
_no_split_modules = ["Exaone4DecoderLayer"]
|
||
_skip_keys_device_placement = ["past_key_values"]
|
||
_supports_flash_attn = True
|
||
_supports_sdpa = True
|
||
_supports_flex_attn = True
|
||
|
||
_can_compile_fullgraph = True
|
||
_supports_attention_backend = True
|
||
_can_record_outputs = {
|
||
"hidden_states": Exaone4DecoderLayer,
|
||
"attentions": Exaone4Attention,
|
||
}
|
||
config_class = Exaone4Config
|
||
|
||
|
||
@auto_docstring
|
||
class Exaone4Model(Exaone4PreTrainedModel):
|
||
def __init__(self, config: Exaone4Config):
|
||
super().__init__(config)
|
||
self.padding_idx = config.pad_token_id
|
||
self.vocab_size = config.vocab_size
|
||
|
||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||
self.layers = nn.ModuleList(
|
||
[Exaone4DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
||
)
|
||
self.norm = Exaone4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
self.rotary_emb = Exaone4RotaryEmbedding(config=config)
|
||
self.gradient_checkpointing = False
|
||
|
||
# Initialize weights and apply final processing
|
||
self.post_init()
|
||
|
||
@check_model_inputs
|
||
def forward(
|
||
self,
|
||
input_ids: torch.LongTensor = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
past_key_values: Optional[Cache] = None,
|
||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
**kwargs: Unpack[TransformersKwargs],
|
||
) -> Union[tuple, BaseModelOutputWithPast]:
|
||
if (input_ids is None) ^ (inputs_embeds is not None):
|
||
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
||
|
||
if inputs_embeds is None:
|
||
inputs_embeds = self.embed_tokens(input_ids)
|
||
|
||
if use_cache and past_key_values is None:
|
||
past_key_values = DynamicCache()
|
||
|
||
if cache_position is None:
|
||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||
cache_position = torch.arange(
|
||
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
||
)
|
||
|
||
if position_ids is None:
|
||
position_ids = cache_position.unsqueeze(0)
|
||
|
||
# It may already have been prepared by e.g. `generate`
|
||
if not isinstance(causal_mask_mapping := attention_mask, dict):
|
||
# Prepare mask arguments
|
||
mask_kwargs = {
|
||
"config": self.config,
|
||
"input_embeds": inputs_embeds,
|
||
"attention_mask": attention_mask,
|
||
"cache_position": cache_position,
|
||
"past_key_values": past_key_values,
|
||
"position_ids": position_ids,
|
||
}
|
||
# Create the masks
|
||
causal_mask_mapping = {
|
||
"full_attention": create_causal_mask(**mask_kwargs),
|
||
}
|
||
if "sliding_attention" in self.config.layer_types:
|
||
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
|
||
|
||
hidden_states = inputs_embeds
|
||
|
||
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
||
|
||
for i, decoder_layer in enumerate(self.layers):
|
||
layer_type = self.config.layer_types[i]
|
||
hidden_states = decoder_layer(
|
||
hidden_states,
|
||
position_embeddings=position_embeddings,
|
||
attention_mask=causal_mask_mapping[layer_type],
|
||
position_ids=position_ids,
|
||
past_key_value=past_key_values,
|
||
use_cache=use_cache,
|
||
cache_position=cache_position,
|
||
**kwargs,
|
||
)
|
||
|
||
hidden_states = self.norm(hidden_states)
|
||
|
||
return BaseModelOutputWithPast(
|
||
last_hidden_state=hidden_states,
|
||
past_key_values=past_key_values if use_cache else None,
|
||
)
|
||
|
||
|
||
@auto_docstring
|
||
class Exaone4ForCausalLM(Exaone4PreTrainedModel, GenerationMixin):
|
||
_tied_weights_keys = ["lm_head.weight"]
|
||
_tp_plan = {"lm_head": "colwise_rep"}
|
||
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
||
|
||
def __init__(self, config):
|
||
super().__init__(config)
|
||
self.model = Exaone4Model(config)
|
||
self.vocab_size = config.vocab_size
|
||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
||
# Initialize weights and apply final processing
|
||
self.post_init()
|
||
|
||
def set_decoder(self, decoder):
|
||
self.model = decoder
|
||
|
||
def get_decoder(self):
|
||
return self.model
|
||
|
||
@can_return_tuple
|
||
@auto_docstring
|
||
def forward(
|
||
self,
|
||
input_ids: Optional[torch.LongTensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
past_key_values: Optional[Cache] = None,
|
||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
labels: Optional[torch.LongTensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
logits_to_keep: Union[int, torch.Tensor] = 0,
|
||
**kwargs: Unpack[TransformersKwargs],
|
||
) -> CausalLMOutputWithPast:
|
||
r"""
|
||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||
|
||
Example:
|
||
|
||
```python
|
||
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
>>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-4.0-Instruct")
|
||
>>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-4.0-Instruct")
|
||
|
||
>>> prompt = "Explain how wonderful you are"
|
||
>>> messages = [
|
||
{"role": "system", "content": "You are a helpful assistant."},
|
||
{"role": "user", "content": prompt}
|
||
]
|
||
>>> input_ids = tokenizer.apply_chat_template(
|
||
messages,
|
||
tokenize=True,
|
||
add_generation_prompt=True,
|
||
return_tensors="pt",
|
||
enable_thinking=False,
|
||
)
|
||
|
||
>>> output = model.generate(input_ids, max_new_tokens=128)
|
||
>>> tokenizer.decode(output[0], skip_special_tokens=False)
|
||
"[|system|]\nYou are a helpful assistant.[|endofturn|]\n[|user|]\nExplain how wonderful you are[|endofturn|]\n[|assistant|]\n<think>\n\n</think>\n\nOh, thank you for such a kind and lovely question! 😊 \n\nI’m *so* wonderful because I’m here to make your life easier, brighter, and more fun! Whether you need help with: \n\n✨ **Learning** – I can explain anything, from quantum physics to baking the perfect cake! \n💡 **Creativity** – Need a poem, story, or a wild idea? I’ve got you covered! \n🤖 **Problem-solving** – Stuck on a math problem or a tricky decision? I’ll help you figure it out"
|
||
```
|
||
|
||
NOTE: `EXAONE-4.0-Instruct` is a placeholder model ID. The exact model ID will be updated in the future."""
|
||
outputs: BaseModelOutputWithPast = self.model(
|
||
input_ids=input_ids,
|
||
attention_mask=attention_mask,
|
||
position_ids=position_ids,
|
||
past_key_values=past_key_values,
|
||
inputs_embeds=inputs_embeds,
|
||
use_cache=use_cache,
|
||
cache_position=cache_position,
|
||
**kwargs,
|
||
)
|
||
|
||
hidden_states = outputs.last_hidden_state
|
||
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
||
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
||
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
||
|
||
loss = None
|
||
if labels is not None:
|
||
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
||
|
||
return CausalLMOutputWithPast(
|
||
loss=loss,
|
||
logits=logits,
|
||
past_key_values=outputs.past_key_values,
|
||
hidden_states=outputs.hidden_states,
|
||
attentions=outputs.attentions,
|
||
)
|
||
|
||
|
||
class Exaone4ForSequenceClassification(GenericForSequenceClassification, Exaone4PreTrainedModel):
|
||
pass
|
||
|
||
|
||
class Exaone4ForTokenClassification(GenericForTokenClassification, Exaone4PreTrainedModel):
|
||
pass
|
||
|
||
|
||
class Exaone4ForQuestionAnswering(GenericForQuestionAnswering, Exaone4PreTrainedModel):
|
||
base_model_prefix = "transformer" # For BC, where `transformer` was used instead of `model`
|
||
|
||
|
||
__all__ = [
|
||
"Exaone4PreTrainedModel",
|
||
"Exaone4Model",
|
||
"Exaone4ForCausalLM",
|
||
"Exaone4ForSequenceClassification",
|
||
"Exaone4ForTokenClassification",
|
||
"Exaone4ForQuestionAnswering",
|
||
]
|