team-10/venv/Lib/site-packages/transformers/models/granitemoeshared/modular_granitemoeshared.py
2025-08-02 02:00:33 +02:00

198 lines
7.8 KiB
Python

# coding=utf-8
# Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, TypedDict
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache
from ...processing_utils import Unpack
from ...utils import logging
from ..granitemoe.modeling_granitemoe import (
GraniteMoeDecoderLayer,
GraniteMoeForCausalLM,
GraniteMoeModel,
GraniteMoePreTrainedModel,
)
from .configuration_granitemoeshared import GraniteMoeSharedConfig
logger = logging.get_logger(__name__)
class GraniteFlashAttentionKwargs(TypedDict, total=False):
"""
Keyword arguments for advanced Flash Attention, causal-conv1d, and mamba_ssm kernel usage.
Use cases include padding-free training and fewer `torch.compile` graph breaks.
Attributes:
cu_seq_lens_q (`torch.LongTensor`)
Gets cumulative sequence length for query state.
cu_seq_lens_k (`torch.LongTensor`)
Gets cumulative sequence length for key state.
max_length_q (`int`):
Maximum sequence length for query state.
max_length_k (`int`):
Maximum sequence length for key state.
seq_idx (`torch.IntTensor):
Index of each packed sequence.
"""
cu_seq_lens_q: torch.LongTensor
cu_seq_lens_k: torch.LongTensor
max_length_q: int
max_length_k: int
seq_idx: torch.IntTensor
class GraniteMoeSharedMLP(nn.Module):
"""
MLP layer for shared experts
Args:
config:
Configuration object with model hyperparameters.
"""
def __init__(self, config: GraniteMoeSharedConfig):
super().__init__()
self.input_size = config.hidden_size
self.hidden_size = config.shared_intermediate_size
self.activation = ACT2FN[config.hidden_act]
self.input_linear = nn.Linear(self.input_size, self.hidden_size * 2, bias=False)
self.output_linear = nn.Linear(self.hidden_size, self.input_size, bias=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.input_linear(hidden_states)
chunked_hidden_states = hidden_states.chunk(2, dim=-1)
hidden_states = self.activation(chunked_hidden_states[0]) * chunked_hidden_states[1]
hidden_states = self.output_linear(hidden_states)
return hidden_states
class GraniteMoeSharedDecoderLayer(GraniteMoeDecoderLayer):
def __init__(self, config: GraniteMoeSharedConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.shared_mlp = None if config.shared_intermediate_size == 0 else GraniteMoeSharedMLP(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
output_router_logits: Optional[bool] = False,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs: Unpack[GraniteFlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs. Can be used to provide `GraniteFlashAttentionKwargs` for
padding-free training and/or improve torch.compile performance.
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states * self.residual_multiplier
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
moe_hidden_states, router_logits = self.block_sparse_moe(hidden_states)
if self.shared_mlp is None:
hidden_states = moe_hidden_states
else:
hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
del moe_hidden_states
hidden_states = residual + hidden_states * self.residual_multiplier
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if output_router_logits:
outputs += (router_logits,)
return outputs
class GraniteMoeSharedPreTrainedModel(GraniteMoePreTrainedModel):
config: GraniteMoeSharedConfig
_no_split_modules = ["GraniteMoeSharedDecoderLayer"]
class GraniteMoeSharedModel(GraniteMoeModel):
def __init__(self, config: GraniteMoeSharedConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[GraniteMoeSharedDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
class GraniteMoeSharedForCausalLM(GraniteMoeForCausalLM):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: GraniteMoeSharedConfig):
super().__init__(config)
self.model = GraniteMoeSharedModel(config)
# Initialize weights and apply final processing
self.post_init()
__all__ = ["GraniteMoeSharedForCausalLM", "GraniteMoeSharedModel", "GraniteMoeSharedPreTrainedModel"]