team-10/venv/Lib/site-packages/transformers/models/hubert/modular_hubert.py
2025-08-02 02:00:33 +02:00

302 lines
12 KiB
Python

# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Hubert model."""
from typing import Optional, Union
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import auto_docstring
from ..wav2vec2.modeling_wav2vec2 import (
Wav2Vec2Encoder,
Wav2Vec2EncoderStableLayerNorm,
Wav2Vec2FeatureEncoder,
Wav2Vec2ForCTC,
Wav2Vec2ForSequenceClassification,
Wav2Vec2Model,
Wav2Vec2SamePadLayer,
)
from .configuration_hubert import HubertConfig
_HIDDEN_STATES_START_POSITION = 1
class HubertPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
self.batch_norm = None
if config.conv_pos_batch_norm:
self.batch_norm = nn.BatchNorm1d(config.hidden_size)
else:
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
if hasattr(self.conv, "parametrizations"):
weight_g = self.conv.parametrizations.weight.original0
weight_v = self.conv.parametrizations.weight.original1
else:
weight_g = self.conv.weight_g
weight_v = self.conv.weight_v
deepspeed.zero.register_external_parameter(self, weight_v)
deepspeed.zero.register_external_parameter(self, weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = HubertSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
if self.batch_norm is not None:
hidden_states = self.batch_norm(hidden_states)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class HubertSamePadLayer(Wav2Vec2SamePadLayer):
pass
class HubertFeatureEncoder(Wav2Vec2FeatureEncoder):
pass
class HubertFeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.feat_proj_layer_norm = config.feat_proj_layer_norm
if self.feat_proj_layer_norm:
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
if self.feat_proj_layer_norm:
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class HubertEncoder(Wav2Vec2Encoder):
pass
class HubertEncoderStableLayerNorm(Wav2Vec2EncoderStableLayerNorm):
pass
@auto_docstring
class HubertPreTrainedModel(PreTrainedModel):
config: HubertConfig
base_model_prefix = "hubert"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm1d)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
if is_deepspeed_zero3_enabled():
import deepspeed
if hasattr(module, "weight_v") and hasattr(module, "weight_g"):
with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0):
nn.init.kaiming_normal_(module.weight.data)
else:
with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0):
nn.init.kaiming_normal_(module.weight.data)
else:
nn.init.kaiming_normal_(module.weight.data)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, HubertModel):
if hasattr(module, "masked_spec_embed"):
module.masked_spec_embed.data.uniform_()
elif isinstance(module, HubertForSequenceClassification):
if hasattr(module, "layer_weights"):
module.layer_weights.data.fill_(1.0 / (self.config.num_hidden_layers + 1))
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
class HubertModel(Wav2Vec2Model, HubertPreTrainedModel):
def __init__(self, config: HubertConfig):
super().__init__(config)
self.config = config
self.feature_extractor = HubertFeatureEncoder(config)
self.feature_projection = HubertFeatureProjection(config)
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_())
if config.do_stable_layer_norm:
self.encoder = HubertEncoderStableLayerNorm(config)
else:
self.encoder = HubertEncoder(config)
# Initialize weights and apply final processing
self.post_init()
del self.adapter
def freeze_feature_extractor(self):
raise AttributeError("Not needed for Hubert")
def freeze_feature_encoder(self):
raise AttributeError("Not needed for Hubert")
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
r"""
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
masked extracted features in *config.proj_codevector_dim* space.
Example:
```python
>>> from transformers import AutoProcessor, HubertModel
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
>>> model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
>>> def map_to_array(example):
... example["speech"] = example["audio"]["array"]
... return example
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
hidden_states = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class HubertForCTC(Wav2Vec2ForCTC):
pass
class HubertForSequenceClassification(Wav2Vec2ForSequenceClassification):
pass
__all__ = ["HubertForCTC", "HubertForSequenceClassification", "HubertModel", "HubertPreTrainedModel"]