286 lines
13 KiB
Python
286 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Processor class for IDEFICS2.
|
|
"""
|
|
|
|
from itertools import accumulate
|
|
from typing import TYPE_CHECKING, Optional, Union
|
|
|
|
from ...feature_extraction_utils import BatchFeature
|
|
from ...image_utils import ImageInput, is_valid_image, load_image
|
|
from ...processing_utils import (
|
|
ImagesKwargs,
|
|
ProcessingKwargs,
|
|
ProcessorMixin,
|
|
Unpack,
|
|
)
|
|
from ...tokenization_utils_base import AddedToken, TextInput
|
|
from ...utils import logging
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ...tokenization_utils_base import PreTokenizedInput
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def is_url(val) -> bool:
|
|
return isinstance(val, str) and val.startswith("http")
|
|
|
|
|
|
def is_image_or_image_url(elem):
|
|
return is_url(elem) or is_valid_image(elem)
|
|
|
|
|
|
class Idefics2ImagesKwargs(ImagesKwargs, total=False):
|
|
image_seq_len: Optional[int]
|
|
|
|
|
|
class Idefics2ProcessorKwargs(ProcessingKwargs, total=False):
|
|
images_kwargs: Idefics2ImagesKwargs
|
|
|
|
_defaults = {
|
|
"text_kwargs": {
|
|
"add_special_tokens": True,
|
|
"padding": False,
|
|
"is_split_into_words": False,
|
|
},
|
|
"images_kwargs": {},
|
|
}
|
|
|
|
|
|
class Idefics2Processor(ProcessorMixin):
|
|
r"""
|
|
Constructs a IDEFICS2 processor which wraps a LLama tokenizer and IDEFICS2 image processor into a single processor.
|
|
|
|
[`IdeficsProcessor`] offers all the functionalities of [`Idefics2ImageProcessor`] and [`LlamaTokenizerFast`]. See
|
|
the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information.
|
|
|
|
Args:
|
|
image_processor (`Idefics2ImageProcessor`):
|
|
An instance of [`Idefics2ImageProcessor`]. The image processor is a required input.
|
|
tokenizer (`PreTrainedTokenizerBase`, *optional*):
|
|
An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input.
|
|
image_seq_len (`int`, *optional*, defaults to 64):
|
|
The length of the image sequence i.e. the number of <image> tokens per image in the input.
|
|
This parameter is used to build the string from the input prompt and image tokens and should match the
|
|
config.perceiver_config.resampler_n_latents value for the model used.
|
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
|
in a chat into a tokenizable string.
|
|
"""
|
|
|
|
attributes = ["image_processor", "tokenizer"]
|
|
image_processor_class = "Idefics2ImageProcessor"
|
|
tokenizer_class = "AutoTokenizer"
|
|
|
|
def __init__(
|
|
self, image_processor, tokenizer=None, image_seq_len: int = 64, chat_template: Optional[str] = None, **kwargs
|
|
):
|
|
if image_processor is None:
|
|
raise ValueError("You need to specify an `image_processor`.")
|
|
if tokenizer is None:
|
|
raise ValueError("You need to specify a `tokenizer`.")
|
|
|
|
if not hasattr(tokenizer, "image_token"):
|
|
self.fake_image_token = AddedToken("<fake_token_around_image>", normalized=False, special=True).content
|
|
self.image_token = AddedToken("<image>", normalized=False, special=True).content
|
|
tokens_to_add = {"additional_special_tokens": [self.fake_image_token, self.image_token]}
|
|
tokenizer.add_special_tokens(tokens_to_add)
|
|
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
|
|
else:
|
|
self.fake_image_token = tokenizer.image_boundary_token
|
|
self.image_token = tokenizer.image_token
|
|
self.image_token_id = tokenizer.image_token_id
|
|
|
|
self.end_of_utterance_token = AddedToken("<end_of_utterance>", normalized=False, special=True)
|
|
tokenizer.add_special_tokens({"additional_special_tokens": [self.end_of_utterance_token]})
|
|
self.image_seq_len = image_seq_len
|
|
|
|
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
|
|
|
def _extract_images_from_prompts(self, prompts):
|
|
prompt_images = []
|
|
for prompt in prompts:
|
|
images = []
|
|
for elem in prompt:
|
|
if is_valid_image(elem):
|
|
images.append(elem)
|
|
elif is_url(elem):
|
|
images.append(load_image(elem))
|
|
prompt_images.append(images)
|
|
return prompt_images
|
|
|
|
def __call__(
|
|
self,
|
|
images: Union[ImageInput, list[ImageInput], list[list[ImageInput]]] = None,
|
|
text: Union[TextInput, "PreTokenizedInput", list[TextInput], list["PreTokenizedInput"]] = None,
|
|
audio=None,
|
|
videos=None,
|
|
**kwargs: Unpack[Idefics2ProcessorKwargs],
|
|
) -> BatchFeature:
|
|
"""
|
|
Processes the input prompts and returns a BatchEncoding.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> import requests
|
|
>>> from transformers import Idefics2Processor
|
|
>>> from transformers.image_utils import load_image
|
|
|
|
>>> processor = Idefics2Processor.from_pretrained("HuggingFaceM4/idefics2-8b", image_seq_len=2)
|
|
>>> processor.image_processor.do_image_splitting = False # Force as False to simplify the example
|
|
|
|
>>> url1 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
|
>>> url2 = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg"
|
|
|
|
>>> image1, image2 = load_image(url1), load_image(url2)
|
|
>>> images = [[image1], [image2]]
|
|
|
|
>>> text = [
|
|
... "<image>In this image, we see",
|
|
... "bla bla bla<image>",
|
|
... ]
|
|
>>> outputs = processor(images=images, text=text, return_tensors="pt", padding=True)
|
|
>>> input_ids = outputs.input_ids
|
|
>>> input_tokens = processor.tokenizer.batch_decode(input_ids)
|
|
>>> print(input_tokens)
|
|
['<s><fake_token_around_image><image><image><fake_token_around_image> In this image, we see', '<s> bla bla bla<fake_token_around_image><image><image><fake_token_around_image>']
|
|
```
|
|
|
|
Args:
|
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`, *optional*):
|
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
|
tensor. If is of type `list[ImageInput]`, it's assumed that this is for a single prompt i.e. of batch size 1.
|
|
text (`Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]`, *optional*):
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
|
|
Wherever an image token, `<image>` is encountered it is expanded to
|
|
`<fake_token_around_image>` + `<image>` * `image_seq_len` * <fake_token_around_image>`.
|
|
return_tensors (`Union[str, TensorType]`, *optional*):
|
|
If set, will return tensors of a particular framework. See [`PreTrainedTokenizerFast.__call__`] for more
|
|
information.
|
|
|
|
"""
|
|
if text is None and images is None:
|
|
raise ValueError("You must provide either `text` or `images`.")
|
|
|
|
output_kwargs = self._merge_kwargs(
|
|
Idefics2ProcessorKwargs,
|
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
|
**kwargs,
|
|
)
|
|
image_seq_len = output_kwargs["images_kwargs"].pop("image_seq_len", None)
|
|
image_seq_len = image_seq_len if image_seq_len is not None else self.image_seq_len
|
|
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
|
|
|
n_images_in_text = []
|
|
inputs = {}
|
|
|
|
if text is not None:
|
|
if isinstance(text, str):
|
|
text = [text]
|
|
elif not isinstance(text, list) and not isinstance(text[0], str):
|
|
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
|
|
|
# Replace the image token with fake tokens around the expanded image token sequence of length `image_seq_len`
|
|
fake_image_token = self.fake_image_token
|
|
image_token = self.image_token
|
|
image_str = f"{fake_image_token}{image_token * image_seq_len}{fake_image_token}"
|
|
|
|
if self.image_processor.do_image_splitting:
|
|
# A single image token is split into 4 patches + 1 original image
|
|
image_str = image_str * 5
|
|
image_seq_len *= 5
|
|
|
|
prompt_strings = []
|
|
for sample in text:
|
|
n_images_in_text.append(sample.count(image_token))
|
|
sample = sample.replace(image_token, image_str)
|
|
# Remove any double fake tokens if images are adjacent
|
|
sample = sample.replace(f"{fake_image_token}{fake_image_token}", f"{fake_image_token}")
|
|
prompt_strings.append(sample)
|
|
|
|
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
|
|
self._check_special_mm_tokens(prompt_strings, text_inputs, modalities=["image"])
|
|
inputs.update(text_inputs)
|
|
|
|
if images is not None:
|
|
if is_image_or_image_url(images):
|
|
images = [[images]]
|
|
elif isinstance(images, (list, tuple)) and is_image_or_image_url(images[0]):
|
|
if text is not None:
|
|
if sum(n_images_in_text) != len(images):
|
|
raise ValueError(
|
|
f"The total number of {image_token} tokens in the prompts should be the same as the number of images passed."
|
|
f" Found {sum(n_images_in_text)} {image_token} tokens and {len(images)} images."
|
|
)
|
|
# Reorganize the images to match the prompts
|
|
cumsum_images_in_text = [0] + list(accumulate(n_images_in_text))
|
|
images = [
|
|
images[cumsum_images_in_text[i] : cumsum_images_in_text[i + 1]]
|
|
for i in range(len(n_images_in_text))
|
|
]
|
|
else:
|
|
images = [images]
|
|
|
|
elif (
|
|
not isinstance(images, (list, tuple))
|
|
and not isinstance(images[0], (list, tuple))
|
|
and not is_image_or_image_url(images[0][0])
|
|
):
|
|
raise ValueError(
|
|
"Invalid input images. Please provide a single image or a list of images or a list of list of images."
|
|
)
|
|
|
|
n_images_in_images = [len(sample) for sample in images]
|
|
if text is not None and not n_images_in_images == n_images_in_text:
|
|
raise ValueError(
|
|
f"The number of images in the text {n_images_in_text} and images {n_images_in_images} should be the same."
|
|
)
|
|
|
|
# Load images if they are URLs
|
|
images = [[load_image(im) for im in sample] for sample in images]
|
|
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
|
inputs.update(image_inputs)
|
|
|
|
return BatchFeature(inputs, tensor_type=return_tensors)
|
|
|
|
def batch_decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|
refer to the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
|
def decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|
the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.decode(*args, **kwargs)
|
|
|
|
@property
|
|
def model_input_names(self):
|
|
tokenizer_input_names = self.tokenizer.model_input_names
|
|
image_processor_input_names = self.image_processor.model_input_names
|
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
|
|
|
|
__all__ = ["Idefics2Processor"]
|