team-10/venv/Lib/site-packages/transformers/models/instructblipvideo/processing_instructblipvideo.py
2025-08-02 02:00:33 +02:00

238 lines
11 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for InstructBLIP. Largely copy of Blip2Processor with addition of a tokenizer for the Q-Former.
"""
import os
from typing import Optional, Union
from ...image_processing_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import (
AddedToken,
BatchEncoding,
PaddingStrategy,
PreTokenizedInput,
TextInput,
TruncationStrategy,
)
from ...utils import TensorType, logging
from ...video_utils import VideoInput
from ..auto import AutoTokenizer
logger = logging.get_logger(__name__)
class InstructBlipVideoProcessor(ProcessorMixin):
r"""
Constructs an InstructBLIPVideo processor which wraps a InstructBLIP image processor and a LLaMa/T5 tokenizer into a single
processor.
[`InstructBlipVideoProcessor`] offers all the functionalities of [`InstructBlipVideoImageProcessor`] and [`AutoTokenizer`]. See the
docstring of [`~InstructBlipVideoProcessor.__call__`] and [`~InstructBlipVideoProcessor.decode`] for more information.
Args:
video_processor (`InstructBlipVideoVideoProcessor`):
An instance of [`InstructBlipVideoVideoProcessor`]. The video processor is a required input.
tokenizer (`AutoTokenizer`):
An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
qformer_tokenizer (`AutoTokenizer`):
An instance of ['PreTrainedTokenizer`]. The Q-Former tokenizer is a required input.
num_query_tokens (`int`, *optional*):
Number of tokens used by the Qformer as queries, should be same as in model's config.
"""
attributes = ["video_processor", "tokenizer", "qformer_tokenizer"]
video_processor_class = "AutoVideoProcessor"
tokenizer_class = "AutoTokenizer"
qformer_tokenizer_class = "AutoTokenizer"
def __init__(self, video_processor, tokenizer, qformer_tokenizer, num_query_tokens=None, **kwargs):
if not hasattr(tokenizer, "video_token"):
self.video_token = AddedToken("<video>", normalized=False, special=True)
tokenizer.add_tokens([self.video_token], special_tokens=True)
else:
self.video_token = tokenizer.video_token
self.num_query_tokens = num_query_tokens
super().__init__(video_processor, tokenizer, qformer_tokenizer)
def __call__(
self,
images: VideoInput = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_token_type_ids: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchFeature:
"""
This method uses [`InstructBlipVideoImageProcessor.__call__`] method to prepare image(s) or video(s) for the model, and
[`BertTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
if images is None and text is None:
raise ValueError("You have to specify at least one of images or text.")
encoding = BatchFeature()
if text is not None:
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
_text_encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_token_type_ids=return_token_type_ids,
return_length=return_length,
verbose=verbose,
return_tensors=None, # required to concatenate below
**kwargs,
)
# if we know how many query tokens, expand text inside processor. We need this hacky manipulation
# because BLIP expects image tokens to be at the beginning even before BOS token
if self.num_query_tokens is not None and images is not None:
text_encoding = {}
video_tokens = (
self.video_token.content * self.num_query_tokens * 4
) # InstrucBLIP works with 4 frames only
video_token_encoding = self.tokenizer(
[video_tokens] * len(text), add_special_tokens=False, return_tensors=None
)
for k in _text_encoding:
text_encoding[k] = [
img_encoding + txt_encoding
for img_encoding, txt_encoding in zip(video_token_encoding[k], _text_encoding[k])
]
else:
text_encoding = _text_encoding
if images is not None:
logger.warning_once(
"Expanding inputs for video tokens in InstructBLIPVideo should be done in processing. "
"Please follow instruction here (https://gist.github.com/zucchini-nlp/65f22892b054dc0d68228af56fbeaac2) to update your InstructBLIPVideo model. "
"Using processors without these attributes in the config is deprecated and will throw an error in v4.54."
)
# cast to desired return tensors type after concatenating
text_encoding = BatchEncoding(text_encoding, tensor_type=return_tensors)
encoding.update(text_encoding)
qformer_text_encoding = self.qformer_tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_token_type_ids=return_token_type_ids,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
encoding["qformer_input_ids"] = qformer_text_encoding.pop("input_ids")
encoding["qformer_attention_mask"] = qformer_text_encoding.pop("attention_mask")
if images is not None:
image_encoding = self.video_processor(images, return_tensors=return_tensors)
encoding.update(image_encoding)
return encoding
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
# overwrite to save the Q-Former tokenizer in a separate folder
def save_pretrained(self, save_directory, **kwargs):
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
qformer_tokenizer_path = os.path.join(save_directory, "qformer_tokenizer")
self.qformer_tokenizer.save_pretrained(qformer_tokenizer_path)
# We modify the attributes so that only the tokenizer and image processor are saved in the main folder
qformer_present = "qformer_tokenizer" in self.attributes
if qformer_present:
self.attributes.remove("qformer_tokenizer")
outputs = super().save_pretrained(save_directory, **kwargs)
if qformer_present:
self.attributes += ["qformer_tokenizer"]
return outputs
# overwrite to load the Q-Former tokenizer from a separate folder
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
processor = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
# if return_unused_kwargs a tuple is returned where the second element is 'unused_kwargs'
if isinstance(processor, tuple):
processor = processor[0]
qformer_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="qformer_tokenizer")
processor.qformer_tokenizer = qformer_tokenizer
return processor
__all__ = ["InstructBlipVideoProcessor"]