team-10/venv/Lib/site-packages/transformers/models/internvl/modular_internvl.py
2025-08-02 02:00:33 +02:00

711 lines
28 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections.abc
from dataclasses import dataclass
from typing import Callable, Optional, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...activations import ACT2FN
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import auto_docstring, can_return_tuple, is_torchdynamo_compiling, logging, torch_int
from ..clip.modeling_clip import CLIPMLP
from ..janus.modeling_janus import JanusVisionAttention
from ..llama.modeling_llama import LlamaRMSNorm
from ..llava.modeling_llava import (
LlavaCausalLMOutputWithPast,
LlavaForConditionalGeneration,
LlavaModel,
LlavaModelOutputWithPast,
LlavaPreTrainedModel,
)
from .configuration_internvl import InternVLConfig, InternVLVisionConfig
logger = logging.get_logger(__name__)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = key
value_states = value
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# No upcasting of the attention weights to float32 in this implementation
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class InternVLVisionRMSNorm(LlamaRMSNorm):
pass
class InternVLVisionAttention(JanusVisionAttention):
def __init__(self, config: InternVLVisionConfig):
super().__init__()
del self.num_key_value_groups
# Needed for flash attention
self.is_causal = False
qk_norm = config.use_qk_norm
self.q_norm = InternVLVisionRMSNorm(self.embed_dim) if qk_norm else nn.Identity()
self.k_norm = InternVLVisionRMSNorm(self.embed_dim) if qk_norm else nn.Identity()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
):
batch_size, seq_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
query_states = query_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scale,
is_causal=False,
**kwargs,
)
attn_output = attn_output.reshape(batch_size, seq_len, self.embed_dim)
output = self.projection_layer(attn_output)
output = self.projection_dropout(output)
outputs = (output, attn_weights) if output_attentions else (output, None)
return outputs
@auto_docstring
class InternVLVisionPreTrainedModel(PreTrainedModel):
config: InternVLVisionConfig
base_model_prefix = "internvl_vision"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["InternVLVisionLayer"]
_supports_sdpa = True
_supports_flash_attn = True
_supports_flex_attn = True
_supports_attention_backend = True
def _init_weights(self, module):
"""Initialize the weights"""
super()._init_weights(module)
if isinstance(module, InternVLVisionEmbeddings):
module.cls_token.data.zero_()
if module.mask_token is not None:
module.mask_token.data.zero_()
if module.position_embeddings is not None:
module.position_embeddings.data.zero_()
elif isinstance(module, InternVLVisionLayer):
module.lambda_1.data.fill_(self.config.layer_scale_init_value)
module.lambda_2.data.fill_(self.config.layer_scale_init_value)
@dataclass
@auto_docstring(
custom_intro="""
Class for outputs of [`InternVLVisionModel`].
"""
)
class InternVLVisionModelOutputWithPooling(BaseModelOutputWithPooling):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
"""
class InternVLVisionPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, (patch_height, patch_width)
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class InternVLVisionEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: InternVLVisionConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
else:
self.mask_token = None
self.patch_embeddings = InternVLVisionPatchEmbeddings(config)
self.patch_size = config.patch_size
self.image_size = (
config.image_size
if isinstance(config.image_size, collections.abc.Iterable)
else (config.image_size, config.image_size)
)
num_patches = self.patch_embeddings.num_patches
if config.use_absolute_position_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
else:
self.position_embeddings = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size[0]
new_width = width // self.patch_size[1]
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
) -> torch.Tensor:
_, _, height, width = pixel_values.shape
embeddings, (patch_height, patch_width) = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
if self.position_embeddings is not None:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
embeddings = self.dropout(embeddings)
return embeddings, (patch_height, patch_width)
class InternVLVisionMLP(CLIPMLP):
pass
NORM2FN = {"layer_norm": nn.LayerNorm, "rms_norm": InternVLVisionRMSNorm}
class InternVLVisionLayer(GradientCheckpointingLayer):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: InternVLVisionConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = InternVLVisionAttention(config)
self.mlp = InternVLVisionMLP(config)
# InternVL uses different layernorm implementations for different models
self.layernorm_before = NORM2FN[config.norm_type](config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = NORM2FN[config.norm_type](config.hidden_size, eps=config.layer_norm_eps)
init_values = config.layer_scale_init_value
self.lambda_1 = nn.Parameter(init_values * torch.ones(config.hidden_size), requires_grad=True)
self.lambda_2 = nn.Parameter(init_values * torch.ones(config.hidden_size), requires_grad=True)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
) -> Union[tuple[torch.Tensor], tuple[torch.Tensor, torch.Tensor]]:
attention_output, attention_weights = self.attention(
self.layernorm_before(hidden_states), # in InternVLVision, layernorm is applied before self-attention
output_attentions=output_attentions,
)
attention_output = self.lambda_1 * attention_output
# first residual connection
hidden_states = attention_output + hidden_states
# in InternVLVision, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.mlp(layer_output)
layer_output = self.dropout(layer_output)
if self.lambda_2 is not None:
layer_output = self.lambda_2 * layer_output
# second residual connection
layer_output = layer_output + hidden_states
return layer_output, attention_weights
class InternVLVisionEncoder(nn.Module):
def __init__(self, config: InternVLVisionConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([InternVLVisionLayer(config) for i in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
@can_return_tuple
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
output_hidden_states: bool = False,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@auto_docstring
class InternVLVisionModel(InternVLVisionPreTrainedModel):
def __init__(self, config: InternVLVisionConfig) -> None:
super().__init__(config)
self.config = config
self.embeddings = InternVLVisionEmbeddings(config)
self.encoder = InternVLVisionEncoder(config)
self.layernorm = (
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@can_return_tuple
@auto_docstring
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[tuple, InternVLVisionModelOutputWithPooling]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
embedding_output, _ = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
return InternVLVisionModelOutputWithPooling(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class InternVLPreTrainedModel(LlavaPreTrainedModel):
pass
INTERNVL_INPUTS_DOCSTRING = None
class InternVLMultiModalProjector(nn.Module):
def __init__(self, config: InternVLConfig):
super().__init__()
self.layer_norm = nn.LayerNorm(config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2)
self.linear_1 = nn.Linear(
config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2, config.text_config.hidden_size
)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size)
def forward(self, image_features):
hidden_states = self.layer_norm(image_features)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class InternVLModelOutputWithPast(LlavaModelOutputWithPast):
pass
class InternVLModel(LlavaModel):
def pixel_shuffle(self, vision_features: torch.Tensor, scale_factor: float = 0.5):
"""Perform pixel shuffle downsampling on vision features.
Args:
vision_features (`torch.Tensor`):
Input tensor of shape (batch_size, width, height, channels).
scale_factor (`float`, *optional*, defaults to `0.5`):
Factor by which to downsample. Default is 0.5, which halves the dimensions.
Returns:
vision_features (`torch.Tensor`):
Downsampled tensor of shape (batch_size, height*scale_factor, width*scale_factor, channels/(scale_factor^2)).
"""
batch_size, width, height, channels = vision_features.size()
if height % scale_factor != 0 or width % scale_factor != 0:
raise ValueError("Height and width must be divisible by scale_factor for proper downsampling.")
# Reshape to allow downsampling
vision_features = vision_features.view(
batch_size, width, int(height * scale_factor), int(channels / scale_factor)
)
# Permute dimensions to align downsampled axis correctly
vision_features = vision_features.permute(0, 2, 1, 3).contiguous()
# Reshape to achieve final downsampled dimensions
vision_features = vision_features.view(
batch_size, int(height * scale_factor), int(width * scale_factor), int(channels / (scale_factor**2))
)
# Swap height and width back for proper orientation
vision_features = vision_features.permute(0, 2, 1, 3).contiguous()
return vision_features
def get_image_features(
self,
pixel_values: torch.FloatTensor,
vision_feature_layer: Optional[Union[int, list[int]]] = None,
vision_feature_select_strategy: Optional[str] = None,
**kwargs,
):
"""
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
The tensors corresponding to the input images.
vision_feature_layer (`int` or `list[int]`):
Layer index or list of layer indices to extract features from.
Returns:
vision_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`.
"""
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
downsample_ratio = self.config.downsample_ratio
if vision_feature_layer == -1:
vision_features = self.vision_tower(pixel_values=pixel_values).last_hidden_state
else:
vision_features = self.vision_model(pixel_values=pixel_values).hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
vision_features = vision_features[:, 1:, :]
# Calculate dimensions based on vision features
channels = vision_features.shape[1]
feature_size = int(channels**0.5)
batch_size = vision_features.shape[0]
# Reshape tensor to spatial dimensions
vision_features = vision_features.reshape(batch_size, feature_size, feature_size, -1)
# Apply downsampling using pixel shuffle
vision_features = self.pixel_shuffle(vision_features, scale_factor=downsample_ratio)
# Reshape tensor to prepare for projection
vision_features = vision_features.reshape(batch_size, -1, vision_features.shape[-1])
# Project features through multi-modal projector
vision_features = self.multi_modal_projector(vision_features)
return vision_features
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[Union[int, list[int]]] = None,
vision_feature_select_strategy: Optional[str] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Union[tuple, InternVLModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if pixel_values is not None:
image_features = self.get_image_features(
pixel_values=pixel_values,
vision_feature_layer=vision_feature_layer,
vision_feature_select_strategy=vision_feature_select_strategy,
)
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
)
special_image_mask = special_image_mask.all(-1)
else:
special_image_mask = input_ids == self.config.image_token_id
n_image_tokens = (special_image_mask).sum()
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
n_image_features = image_features.shape[0] * image_features.shape[1]
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
cache_position=cache_position,
**kwargs,
)
return InternVLModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
class InternVLCausalLMOutputWithPast(LlavaCausalLMOutputWithPast):
pass
class InternVLForConditionalGeneration(LlavaForConditionalGeneration):
def forward(**super_kwargs):
r"""
Example:
```python
>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> torch_device = "cuda"
>>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
>>> model = AutoModelForImageTextToText.from_pretrained(
... "OpenGVLab/InternVL3-1B-hf", torch_dtype=torch.bfloat16, device_map=torch_device
... )
>>> messages = [
... {
... "role": "user",
... "content": [
... {
... "type": "image",
... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
... },
... {
... "type": "image",
... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
... },
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
... ],
... },
... ]
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
>>> generate_ids = model.generate(**inputs, max_new_tokens=200)
>>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
The images depict the Statue of Liberty and the Golden Gate Bridge.
```"""
super().forward(**super_kwargs)
__all__ = [
"InternVLVisionPreTrainedModel",
"InternVLVisionModel",
"InternVLPreTrainedModel",
"InternVLModel",
"InternVLForConditionalGeneration",
]