165 lines
7.6 KiB
Python
165 lines
7.6 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
|
|
|
|
class Lfm2Config(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`Lfm2Model`]. It is used to instantiate a LFM2
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the LFM2-1.2B model.
|
|
e.g. [LiquidAI/LFM2-1.2B](https://huggingface.co/LiquidAI/LFM2-1.2B)
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 65536):
|
|
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`Lfm2Model`]
|
|
hidden_size (`int`, *optional*, defaults to 2560):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 12288):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer decoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to 8):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details, check out [this
|
|
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
|
|
`num_attention_heads`.
|
|
max_position_embeddings (`int`, *optional*, defaults to 128000):
|
|
The maximum sequence length that this model might ever be used with. Lfm2 1 supports up to 2048 tokens,
|
|
Lfm2 2 up to 4096, CodeLfm2 up to 16384.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*, defaults to 0):
|
|
Padding token id.
|
|
bos_token_id (`int`, *optional*, defaults to 1):
|
|
Beginning of stream token id.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
End of stream token id.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
|
Whether to tie weight embeddings
|
|
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
|
The base period of the RoPE embeddings.
|
|
conv_bias (`bool`, *optional*, defaults to `False`):
|
|
Whether to use bias in the conv layers.
|
|
conv_L_cache (`int`, *optional*, defaults to 3):
|
|
L_cache dim in the conv layers.
|
|
block_multiple_of (`int`, *optional*, defaults to 256):
|
|
Multiple for the `intermediate_size`.
|
|
block_ffn_dim_multiplier (`float`, *optional*, defaults to 1.0):
|
|
Multiplier for the `intermediate_size`.
|
|
block_auto_adjust_ff_dim (`bool`, *optional*, defaults to `True`):
|
|
Whether to adjust the dim of the `intermediate_size`.
|
|
full_attn_idxs (`Optional`, *optional*):
|
|
Index of the layers which use attention.
|
|
layer_types (`Optional`, *optional*):
|
|
Type of each layers.
|
|
|
|
```python
|
|
>>> from transformers import Lfm2Model, Lfm2Config
|
|
|
|
>>> # Initializing a LFM2 model
|
|
>>> configuration = Lfm2Config()
|
|
|
|
>>> # Initializing a model from the LFM2-1.2B style configuration
|
|
>>> model = Lfm2Model(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "lfm2"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size: int = 65536,
|
|
hidden_size: int = 2560,
|
|
intermediate_size: int = 12288,
|
|
num_hidden_layers: int = 32,
|
|
num_attention_heads: int = 32,
|
|
num_key_value_heads: int = 8,
|
|
max_position_embeddings: int = 128_000,
|
|
initializer_range: float = 0.02,
|
|
norm_eps: float = 0.00001,
|
|
use_cache: bool = True,
|
|
pad_token_id: int = 0,
|
|
bos_token_id: int = 1,
|
|
eos_token_id: int = 2,
|
|
tie_word_embeddings: bool = True,
|
|
rope_theta: float = 1000000.0,
|
|
conv_bias: bool = False,
|
|
conv_L_cache: int = 3,
|
|
block_multiple_of: int = 256,
|
|
block_ffn_dim_multiplier: float = 1.0,
|
|
block_auto_adjust_ff_dim: bool = True,
|
|
full_attn_idxs: Optional[list[int]] = None,
|
|
layer_types: Optional[list[str]] = None,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.rope_theta = kwargs.get("theta", rope_theta) # to fit original config keys
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.use_cache = use_cache
|
|
self.norm_eps = norm_eps
|
|
self.initializer_range = initializer_range
|
|
|
|
# attn operator config
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
|
|
# custom operator config
|
|
self.conv_bias = conv_bias
|
|
self.conv_L_cache = conv_L_cache
|
|
|
|
# MLP config
|
|
self.intermediate_size = kwargs.get("block_ff_dim", intermediate_size) # to fit original config keys
|
|
self.block_multiple_of = block_multiple_of
|
|
self.block_ffn_dim_multiplier = block_ffn_dim_multiplier
|
|
self.block_auto_adjust_ff_dim = block_auto_adjust_ff_dim
|
|
|
|
self.layer_types = layer_types
|
|
if self.layer_types is None:
|
|
full_attn_idxs = full_attn_idxs if full_attn_idxs is not None else list(range(num_hidden_layers))
|
|
self.layer_types = ["full_attention" if i in full_attn_idxs else "conv" for i in range(num_hidden_layers)]
|
|
|
|
tie_word_embeddings = kwargs.get("tie_embedding", tie_word_embeddings) # to fit original config keys
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
__all__ = ["Lfm2Config"]
|