team-10/venv/Lib/site-packages/transformers/models/llama4/processing_llama4.py
2025-08-02 02:00:33 +02:00

258 lines
16 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput, make_flat_list_of_images
class Llama4ImagesKwargs(ImagesKwargs, total=False):
max_patches: Optional[int]
resize_to_max_canvas: Optional[bool]
class Llama4ProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Llama4ImagesKwargs
_defaults = {
"text_kwargs": {
"padding_side": "left",
},
}
chat_template = "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %} \n {%- if messages[0]['content'] is string %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- else %}\n {#- FIXME: The processor requires an array, always. #}\n {%- set system_message = messages[0]['content'][0]['text']|trim %}\n {%- endif %}\n {%- set messages = messages[1:] %}\n {%- set user_supplied_system_message = true %}\n{%- else %}\n {%- set system_message = \"\" %}\n {%- set user_supplied_system_message = false %}\n{%- endif %}\n\n{#- System message if the user supplied one #}\n{%- if user_supplied_system_message %}\n {{- \"<|header_start|>system<|header_end|>\n\n\" }}\n {%- if tools is not none %}\n {{- \"Environment: ipython\n\" }}\n {%- endif %}\n {%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\n\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\n\n\" }}\n {%- endfor %}\n {%- endif %}\n {{- system_message }}\n {{- \"<|eot|>\" }}\n{%- endif %}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|header_start|>user<|header_end|>\n\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\n\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\n\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\n\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|header_start|>' + message['role'] + '<|header_end|>\n\n' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- \"<|eot|>\" }}\n {%- elif 'tool_calls' in message and message.tool_calls|length > 0 %}\n {{- '<|header_start|>assistant<|header_end|>\n\n' -}}\n {{- '<|python_start|>' }}\n {%- if message['content'] is string %}\n {{- message['content'] }}\n {%- else %}\n {%- for content in message['content'] %}\n {%- if content['type'] == 'image' %}\n {{- '<|image|>' }}\n {%- elif content['type'] == 'text' %}\n {{- content['text'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- '<|python_end|>' }}\n {%- for tool_call in message.tool_calls %}\n {{- '{\"name\": \"' + tool_call.function.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.function.arguments | tojson }}\n {{- \"}\" }}\n {%- endfor %}\n {{- \"<|eot|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|header_start|>ipython<|header_end|>\n\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|header_start|>assistant<|header_end|>\n\n' }}\n{%- endif %}\n"
class Llama4Processor(ProcessorMixin):
r"""
Constructs a Llama4 processor which wraps a [`AutoImageProcessor`] and
[`PretrainedTokenizerFast`] tokenizer into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~Llama4Processor.__call__`] and [`~Llama4Processor.decode`] for more information.
Args:
image_processor ([`AutoImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`], *optional*):
The tokenizer is a required input.
patch_size (`int`, *optional*, defaults to 28):
The size of image patches for tokenization.
img_size (`int`, *optional*, defaults to 364):
The size of the image to be tokenized. This should correspond to the size given to the image processor.
image_token (`str`, *optional*, defaults to `"<|image|>"`):
The token to be used to represent an image in the text.
downsample_factor (`int`, *optional*, defaults to 1):
The factor by which to scale the patch size.
start_of_img_token (`str`, *optional*, defaults to `"<|START_OF_IMG|>"`):
The token to be used to represent the start of an image in the text.
end_of_img_token (`str`, *optional*, defaults to `"<|END_OF_IMG|>"`):
The token to be used to represent the end of an image in the text.
img_patch_token (`str`, *optional*, defaults to `"<|IMG_PATCH|>"`):
The token to be used to represent an image patch in the text.
img_line_break_token (`str`, *optional*, defaults to `"<|IMG_LINE_BREAK|>"`):
The token to be used to represent a line break in the text.
tile_token (`str`, *optional*, defaults to `"TILE"`):
The token to be used to represent an image patch in the text.
tile_global_token (`str`, *optional*, defaults to `"TILE_GLOBAL"`):
The token to be used to represent the cover image in the text.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
patch_size: int = 14,
pixel_shuffle_ratio: float = 0.5,
fake_image_token="<|image|>",
image_token="<|image|>",
start_of_image_token="<|image_start|>",
end_of_image_token="<|image_end|>",
patch_token="<|patch|>",
tile_x_separator_token="<|tile_x_separator|>",
tile_y_separator_token="<|tile_y_separator|>",
chat_template=chat_template,
**kwargs,
):
super().__init__(image_processor, tokenizer, chat_template=chat_template)
self.downsample_ratio = int(round(1.0 / (pixel_shuffle_ratio**2)))
self.patch_size = patch_size
self.fake_image_token = fake_image_token
self.image_token = image_token
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
self.start_of_img_token = start_of_image_token
self.end_of_img_token = end_of_image_token
self.img_patch_token = patch_token
self.tile_token = tile_x_separator_token
self.tile_global_token = tile_y_separator_token
def _prompt_split_image(self, aspect_ratio, num_patches_per_chunk):
"""
Create a structured string representation of image tokens
Args:
num_patches: Number of patches in the image
Returns:
String with appropriate image tokens
"""
img_string = "<|image_start|>"
ratio_h, ratio_w = aspect_ratio
if ratio_h * ratio_w > 1:
for yy in range(ratio_h):
for xx in range(ratio_w):
img_string += "<|patch|>" * num_patches_per_chunk
if xx < ratio_w - 1:
img_string += "<|tile_x_separator|>"
img_string += "<|tile_y_separator|>"
img_string += "<|image|>"
img_string += "<|patch|>" * num_patches_per_chunk
img_string += "<|image_end|>"
return img_string
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[Llama4ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] to encode the text.
To prepare the vision inputs, this method forwards the `images` and `kwargs` arguments to
Llama4ImageProcessor's [`~Llama4ImageProcessor.__call__`] if `images` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None:
raise ValueError("You have to specify text.")
output_kwargs = self._merge_kwargs(
Llama4ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if not isinstance(text, (list, tuple)):
text = [text]
# Process images
image_inputs = {}
if images is not None:
images = make_flat_list_of_images(images)
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
image_height, image_width = image_inputs["pixel_values"][0].shape[-2:]
num_patches_per_chunk = int(
(image_height // self.patch_size) * (image_width // self.patch_size) // self.downsample_ratio
)
aspect_ratios = image_inputs.pop("aspect_ratios")
total_placeholders = sum(prompt.count(self.fake_image_token) for prompt in text)
if total_placeholders != len(images):
raise ValueError(
f"Found {total_placeholders} placeholders across the batch, "
f"but have {len(images)} flattened images."
)
image_index = 0
processed_text = []
for prompt in text:
placeholder_count = prompt.count(self.fake_image_token)
if placeholder_count == 0:
# do nothing if there is no image
processed_text.append(prompt)
continue
prompt_splits = prompt.split(self.fake_image_token)
new_prompt = []
for local_image_index, split_part in enumerate(prompt_splits):
new_prompt.append(split_part)
if local_image_index < placeholder_count:
tokens_for_this_image = self._prompt_split_image(
aspect_ratios[image_index], num_patches_per_chunk
)
image_index += 1
new_prompt.append(tokens_for_this_image)
processed_text.append("".join(new_prompt))
if image_index != len(images):
raise ValueError("Number of image placeholders in the prompt does not match the number of images.")
text = processed_text
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
self._check_special_mm_tokens(text, text_inputs, modalities=["image"])
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(tokenizer_input_names) + list(image_processor_input_names)
__all__ = ["Llama4Processor"]