235 lines
11 KiB
Python
235 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Processor class for Llava.
|
|
"""
|
|
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
|
|
from ...feature_extraction_utils import BatchFeature
|
|
from ...image_utils import ImageInput, get_image_size, to_numpy_array
|
|
from ...processing_utils import (
|
|
MultiModalData,
|
|
ProcessingKwargs,
|
|
ProcessorMixin,
|
|
Unpack,
|
|
)
|
|
from ...tokenization_utils_base import PreTokenizedInput, TextInput
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class LlavaProcessorKwargs(ProcessingKwargs, total=False):
|
|
_defaults = {
|
|
"text_kwargs": {"padding": False, "return_mm_token_type_ids": False},
|
|
"images_kwargs": {},
|
|
}
|
|
|
|
|
|
class LlavaProcessor(ProcessorMixin):
|
|
r"""
|
|
Constructs a LLaVa processor which wraps a LLaVa image processor and a LLaMa tokenizer into a single processor.
|
|
|
|
[`LlavaProcessor`] offers all the functionalities of [`LlavaImageProcessor`] and [`LlamaTokenizerFast`]. See the
|
|
[`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.
|
|
|
|
Args:
|
|
image_processor ([`LlavaImageProcessor`], *optional*):
|
|
The image processor is a required input.
|
|
tokenizer ([`LlamaTokenizerFast`], *optional*):
|
|
The tokenizer is a required input.
|
|
patch_size (`int`, *optional*):
|
|
Patch size from the vision tower.
|
|
vision_feature_select_strategy (`str`, *optional*):
|
|
The feature selection strategy used to select the vision feature from the vision backbone.
|
|
Should be same as in model's config
|
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
|
in a chat into a tokenizable string.
|
|
image_token (`str`, *optional*, defaults to `"<image>"`):
|
|
Special token used to denote image location.
|
|
num_additional_image_tokens (`int`, *optional*, defaults to 0):
|
|
Number of additional tokens added to the image embeddings, such as CLS (+1). If the backbone has no CLS or other
|
|
extra tokens appended, no need to set this arg.
|
|
"""
|
|
|
|
attributes = ["image_processor", "tokenizer"]
|
|
image_processor_class = "AutoImageProcessor"
|
|
tokenizer_class = "AutoTokenizer"
|
|
|
|
def __init__(
|
|
self,
|
|
image_processor=None,
|
|
tokenizer=None,
|
|
patch_size=None,
|
|
vision_feature_select_strategy=None,
|
|
chat_template=None,
|
|
image_token="<image>", # set the default and let users change if they have peculiar special tokens in rare cases
|
|
num_additional_image_tokens=0,
|
|
**kwargs,
|
|
):
|
|
self.patch_size = patch_size
|
|
self.num_additional_image_tokens = num_additional_image_tokens
|
|
self.vision_feature_select_strategy = vision_feature_select_strategy
|
|
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
|
|
self.image_token_id = tokenizer.encode(self.image_token, add_special_tokens=False)[0]
|
|
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
|
|
|
def __call__(
|
|
self,
|
|
images: ImageInput = None,
|
|
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
|
|
audio=None,
|
|
videos=None,
|
|
**kwargs: Unpack[LlavaProcessorKwargs],
|
|
) -> BatchFeature:
|
|
"""
|
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
|
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
|
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
|
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
|
|
of the above two methods for more information.
|
|
|
|
Args:
|
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
|
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
|
tensor. Both channels-first and channels-last formats are supported.
|
|
text (`str`, `list[str]`, `list[list[str]]`):
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors of a particular framework. Acceptable values are:
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return NumPy `np.ndarray` objects.
|
|
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
|
|
|
Returns:
|
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
|
`None`).
|
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
|
"""
|
|
if images is None and text is None:
|
|
raise ValueError("You have to specify at least one of `images` or `text`.")
|
|
|
|
output_kwargs = self._merge_kwargs(
|
|
LlavaProcessorKwargs,
|
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
|
**kwargs,
|
|
)
|
|
if images is not None:
|
|
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
|
else:
|
|
image_inputs = {}
|
|
|
|
if isinstance(text, str):
|
|
text = [text]
|
|
elif not isinstance(text, list) and not isinstance(text[0], str):
|
|
raise TypeError("Invalid input text. Please provide a string, or a list of strings")
|
|
|
|
# try to expand inputs in processing if we have the necessary parts
|
|
prompt_strings = text
|
|
if image_inputs.get("pixel_values") is not None:
|
|
# Replace the image token with the expanded image token sequence
|
|
pixel_values = image_inputs["pixel_values"]
|
|
height, width = get_image_size(to_numpy_array(pixel_values[0]))
|
|
num_image_tokens = (height // self.patch_size) * (
|
|
width // self.patch_size
|
|
) + self.num_additional_image_tokens
|
|
if self.vision_feature_select_strategy == "default":
|
|
num_image_tokens -= 1
|
|
|
|
prompt_strings = []
|
|
for sample in text:
|
|
sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
|
|
prompt_strings.append(sample)
|
|
|
|
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
|
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False)
|
|
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None)
|
|
self._check_special_mm_tokens(prompt_strings, text_inputs, modalities=["image"])
|
|
|
|
if return_mm_token_type_ids:
|
|
array_ids = np.array(text_inputs["input_ids"])
|
|
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
|
|
mm_token_type_ids[array_ids == self.image_token_id] = 1
|
|
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
|
|
|
|
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
|
|
|
|
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
|
|
"""
|
|
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
|
|
|
|
Args:
|
|
image_sizes (`list[list[int]]`, *optional*):
|
|
The input sizes formatted as (height, width) per each image.
|
|
|
|
Returns:
|
|
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
|
|
input modalities, along with other useful data.
|
|
"""
|
|
|
|
vision_data = {}
|
|
if image_sizes is not None:
|
|
images_kwargs = LlavaProcessorKwargs._defaults.get("images_kwargs", {})
|
|
images_kwargs.update(kwargs)
|
|
crop_size = images_kwargs.get("crop_size", None) or self.image_processor.crop_size
|
|
resized_height, resized_width = crop_size["height"], crop_size["width"]
|
|
|
|
num_image_tokens = (resized_height // self.patch_size) * (resized_width // self.patch_size)
|
|
num_image_tokens += self.num_additional_image_tokens
|
|
if self.vision_feature_select_strategy == "default":
|
|
num_image_tokens -= 1
|
|
|
|
num_image_tokens = [num_image_tokens] * len(image_sizes)
|
|
num_image_patches = [1] * len(image_sizes)
|
|
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
|
|
|
|
return MultiModalData(**vision_data)
|
|
|
|
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
|
def batch_decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|
refer to the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
|
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
|
def decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|
the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.decode(*args, **kwargs)
|
|
|
|
@property
|
|
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
|
def model_input_names(self):
|
|
tokenizer_input_names = self.tokenizer.model_input_names
|
|
image_processor_input_names = self.image_processor.model_input_names
|
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
|
|
|
|
__all__ = ["LlavaProcessor"]
|