team-10/venv/Lib/site-packages/transformers/models/minimax/modeling_minimax.py
2025-08-02 02:00:33 +02:00

933 lines
41 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/minimax/modular_minimax.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_minimax.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 MiniMaxAI and HuggingFace Inc. teams. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from transformers.utils.generic import check_model_inputs
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...integrations import use_kernel_forward_from_hub
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import (
GenericForQuestionAnswering,
GenericForSequenceClassification,
GenericForTokenClassification,
GradientCheckpointingLayer,
)
from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple
from ...utils.generic import OutputRecorder
from .configuration_minimax import MiniMaxConfig
@use_kernel_forward_from_hub("RMSNorm")
class MiniMaxRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
MiniMaxRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class MiniMaxCache(DynamicCache):
def __init__(self):
super().__init__()
self.linear_cache: list[torch.Tensor] = []
def set_linear_cache(self, layer_idx, linear_cache):
# There may be skipped layers, fill them with empty lists
for _ in range(len(self.linear_cache), layer_idx + 1):
self.linear_cache.append([])
self.linear_cache[layer_idx] = linear_cache
def get_linear_cache(self, layer_idx: int):
if layer_idx < len(self):
return self.linear_cache[layer_idx]
return None
def __len__(self):
return max(super().__len__(), len(self.linear_cache))
def __getitem__(self, layer_idx: int):
if layer_idx < len(self.linear_cache) and self.linear_cache[layer_idx] != []:
return (self.linear_cache[layer_idx],)
return super().__getitem__(layer_idx)
def __iter__(self):
for layer_idx in range(len(self)):
yield self[layer_idx]
def batch_repeat_interleave(self, repeats: int):
for layer_idx in range(len(self)):
if self.linear_cache[layer_idx] != []:
self.linear_cache[layer_idx] = self.linear_cache[layer_idx].repeat_interleave(repeats, dim=0)
else:
self.layers[layer_idx].batch_repeat_interleave(repeats)
def batch_select_indices(self, indices: torch.Tensor):
for layer_idx in range(len(self)):
if self.linear_cache[layer_idx] != []:
self.linear_cache[layer_idx] = self.linear_cache[layer_idx][indices, ...]
else:
self.layers[layer_idx].batch_select_indices(indices)
def crop(self, max_length: int):
raise RuntimeError("MiniMaxCache doesnot support `crop` method")
class MiniMaxLightningAttention(nn.Module):
def __init__(self, config: MiniMaxConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
self.num_attention_heads = config.num_attention_heads
self.num_hidden_layers = config.num_hidden_layers
self.block_size = config.block_size
self.act_fn = ACT2FN[config.hidden_act]
self.norm = MiniMaxRMSNorm(self.head_dim * self.num_attention_heads)
self.qkv_proj = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim * 3, bias=False)
self.out_proj = nn.Linear(self.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.output_gate = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
slope_rate = self.get_slope_rate()
query_decay, key_decay, diagonal_decay = self.decay_factors(slope_rate)
self.register_buffer("slope_rate", slope_rate)
self.register_buffer("query_decay", query_decay)
self.register_buffer("key_decay", key_decay)
self.register_buffer("diagonal_decay", diagonal_decay)
def get_slope_rate(self):
base = 1 / (2 ** (8 / self.num_attention_heads))
exponent = torch.arange(self.num_attention_heads) + 1
factor = 1 - self.layer_idx / (self.num_hidden_layers - 1 + 1e-5) + 1e-5
rate = base**exponent
rate = rate * factor
rate = rate[:, None, None]
return rate
def decay_factors(self, slope_rate):
block_size_range = torch.arange(self.block_size) + 1
query_decay = torch.exp(-slope_rate * block_size_range[:, None])
key_decay = torch.exp(-slope_rate * (self.block_size - block_size_range[:, None]))
diagonal_decay = block_size_range[:, None] - block_size_range[None, :]
diagonal_decay = diagonal_decay[None, None, :, :]
diagonal_decay = slope_rate * diagonal_decay
diagonal_decay = torch.where(diagonal_decay >= 0, -diagonal_decay, float("-inf"))
diagonal_decay = torch.exp(diagonal_decay)
return query_decay, key_decay, diagonal_decay
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
batch_size, seq_len, hidden_size = hidden_states.shape
num_blocks = (seq_len + self.block_size - 1) // self.block_size
qkv_states = self.act_fn(self.qkv_proj(hidden_states))
qkv_states = qkv_states.reshape(batch_size, seq_len, self.num_attention_heads, 3 * self.head_dim)
query_states, key_states, value_states = torch.split(qkv_states, self.head_dim, dim=3)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# calculated (K.T @ V) and saved as cache
attn_weights_inter = None
if past_key_value is not None:
attn_weights_inter = past_key_value.get_linear_cache(self.layer_idx)
if attn_weights_inter is None:
attn_weights_inter = torch.zeros(batch_size, self.num_attention_heads, self.head_dim, self.head_dim).to(
value_states
)
# apply attention_mask
if attention_mask is not None:
attention_mask = attention_mask.to(dtype=torch.bool) # Ensure it's a boolean tensor
value_states = value_states.masked_fill(~attention_mask.unsqueeze(1).unsqueeze(-1), 0)
attn_output = []
for i in range(num_blocks):
start_idx = i * self.block_size
end_idx = min(start_idx + self.block_size, seq_len)
current_block_size = end_idx - start_idx
current_query_states = query_states[:, :, start_idx:end_idx]
current_key_states = key_states[:, :, start_idx:end_idx]
current_value_states = value_states[:, :, start_idx:end_idx]
current_query_decay = self.query_decay[:, :current_block_size]
current_key_decay = self.key_decay[:, -current_block_size:]
current_diagonal_decay = self.diagonal_decay[:, :, :current_block_size, :current_block_size]
block_decay = torch.exp(-self.slope_rate * current_block_size)
# intra: ( Q @ K.T ) @ V -> QK * V
attn_weights_intra = torch.matmul(current_query_states, current_key_states.transpose(-1, -2))
attn_output_intra = torch.matmul(attn_weights_intra * current_diagonal_decay, current_value_states)
# inter: Q @ ( K.T @ V ) -> Q * KV
attn_output_inter = torch.matmul(current_query_states * current_query_decay, attn_weights_inter)
# final attention output
current_attn_output = attn_output_inter + attn_output_intra
attn_output.append(current_attn_output)
# cacluate attn_weights_inter for next block or cache
next_attn_weights_inter = torch.matmul(
(current_key_states * current_key_decay).transpose(-1, -2), current_value_states
)
attn_weights_inter = attn_weights_inter * block_decay + next_attn_weights_inter
else:
ratio = torch.exp(-self.slope_rate)
attn_output = []
for i in range(seq_len):
current_query_states = query_states[:, :, i : i + 1]
current_key_states = key_states[:, :, i : i + 1]
current_value_states = value_states[:, :, i : i + 1]
current_attn_weights_inter = torch.matmul(current_key_states.transpose(-1, -2), current_value_states)
attn_weights_inter = ratio * attn_weights_inter + current_attn_weights_inter
current_attn_output = torch.matmul(current_query_states, attn_weights_inter)
attn_output.append(current_attn_output)
# concatenate attention outputs over all blocks
attn_output = torch.cat(attn_output, dim=-2)
# final output projection
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, seq_len, self.num_attention_heads * self.head_dim)
attn_output = self.norm(attn_output)
attn_output = F.sigmoid(self.output_gate(hidden_states)) * attn_output
attn_output = self.out_proj(attn_output)
# update cache
if past_key_value is not None:
past_key_value.set_linear_cache(self.layer_idx, attn_weights_inter)
return attn_output, attn_weights_inter
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class MiniMaxAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: MiniMaxConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None), # main diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class MiniMaxBlockSparseTop2MLP(nn.Module):
def __init__(self, config: MiniMaxConfig):
super().__init__()
self.ffn_dim = config.intermediate_size
self.hidden_dim = config.hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
class MiniMaxSparseMoeBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accommodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([MiniMaxBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
# Jitter parameters
self.jitter_noise = config.router_jitter_noise
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
for expert_idx in expert_hitted:
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx].squeeze(0))
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class MiniMaxDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: MiniMaxConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MiniMaxAttention(config, layer_idx)
self.block_sparse_moe = MiniMaxSparseMoeBlock(config)
self.input_layernorm = MiniMaxRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MiniMaxRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.layer_idx = layer_idx
self.layer_type = config.layer_types[layer_idx]
self.mlp_alpha_factor = config.mlp_alpha_factor
self.mlp_beta_factor = config.mlp_beta_factor
if self.layer_type == "linear_attention":
self.self_attn = MiniMaxLightningAttention(config, layer_idx)
self.attn_alpha_factor = config.linear_attn_alpha_factor
self.attn_beta_factor = config.linear_attn_beta_factor
else:
self.self_attn = MiniMaxAttention(config, layer_idx)
self.attn_alpha_factor = config.full_attn_alpha_factor
self.attn_beta_factor = config.full_attn_beta_factor
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
attention_mask (`torch.Tensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
hidden_states = self.input_layernorm(hidden_states)
residual = hidden_states
# Self Attention
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual * self.attn_alpha_factor + hidden_states * self.attn_beta_factor
# Fully Connected
hidden_states = self.post_attention_layernorm(hidden_states)
residual = hidden_states
hidden_states, _ = self.block_sparse_moe(hidden_states)
hidden_states = residual * self.mlp_alpha_factor + hidden_states * self.mlp_beta_factor
return hidden_states
@auto_docstring
class MiniMaxPreTrainedModel(PreTrainedModel):
config: MiniMaxConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MiniMaxDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = False
_supports_attention_backend = True
_can_record_outputs = {
"router_logits": OutputRecorder(MiniMaxSparseMoeBlock, index=1),
"hidden_states": MiniMaxDecoderLayer,
"attentions": [MiniMaxAttention, MiniMaxLightningAttention],
}
class MiniMaxRotaryEmbedding(nn.Module):
def __init__(self, config: MiniMaxConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
@auto_docstring
class MiniMaxModel(MiniMaxPreTrainedModel):
def __init__(self, config: MiniMaxConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[MiniMaxDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = MiniMaxRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = MiniMaxRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[MiniMaxCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> MoeModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if use_cache and past_key_values is None:
past_key_values = MiniMaxCache()
elif use_cache and not isinstance(past_key_values, MiniMaxCache):
raise ValueError(
f"MiniMax uses cache of its own and is not compatible with `past_key_values` of type {type(past_key_values)}."
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
causal_mask = mask_function(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers:
if decoder_layer.layer_type == "full_attention":
input_attention_mask = causal_mask
else:
# lightning attention uses original attention_mask, and uses it only for the first step
input_attention_mask = attention_mask
hidden_states = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=input_attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
num_experts: Optional[int] = None,
top_k=2,
attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits:
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts:
Number of experts
top_k:
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter.
attention_mask (`torch.Tensor`, *optional*):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
@auto_docstring
class MiniMaxForCausalLM(MiniMaxPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = MiniMaxModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> MoeCausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, MiniMaxForCausalLM
>>> model = MiniMaxForCausalLM.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: MoeModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_router_logits=output_router_logits,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits,
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
class MiniMaxForSequenceClassification(GenericForSequenceClassification, MiniMaxPreTrainedModel):
pass
class MiniMaxForTokenClassification(GenericForTokenClassification, MiniMaxPreTrainedModel):
pass
class MiniMaxForQuestionAnswering(GenericForQuestionAnswering, MiniMaxPreTrainedModel):
pass
__all__ = [
"MiniMaxPreTrainedModel",
"MiniMaxModel",
"MiniMaxForCausalLM",
"MiniMaxForSequenceClassification",
"MiniMaxForTokenClassification",
"MiniMaxForQuestionAnswering",
]