team-10/venv/Lib/site-packages/transformers/models/olmo/modular_olmo.py
2025-08-02 02:00:33 +02:00

172 lines
6.9 KiB
Python

from typing import Callable, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from ...cache_utils import Cache
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...utils import logging
from ..llama.modeling_llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaMLP,
LlamaModel,
LlamaRotaryEmbedding,
eager_attention_forward,
rotate_half,
)
from .configuration_olmo import OlmoConfig
logger = logging.get_logger(__name__)
class OlmoLayerNorm(nn.Module):
"""LayerNorm but with no learnable weight or bias."""
def __init__(self, hidden_size: int) -> None:
super().__init__()
self.normalized_shape = (hidden_size,)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
return F.layer_norm(hidden_states.to(dtype=torch.float32), self.normalized_shape, None, None, eps=1e-5).to(
orig_dtype
)
class OlmoMLP(LlamaMLP):
def __init__(self, config):
super().__init__(config)
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
q_type, k_type = q.dtype, k.dtype
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed.to(q_type), k_embed.to(k_type)
class OlmoAttention(LlamaAttention):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
if self.config.clip_qkv is not None:
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class OlmoDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: OlmoConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.input_layernorm = OlmoLayerNorm(config.hidden_size)
self.post_attention_layernorm = OlmoLayerNorm(config.hidden_size)
self.self_attn = OlmoAttention(config=config, layer_idx=layer_idx)
# This is identical to LlamaRotaryEmbedding except the output cos and sin are returned
# as float32 rather than the input type.
class OlmoRotaryEmbedding(LlamaRotaryEmbedding):
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos, sin
class OlmoModel(LlamaModel):
def __init__(self, config: OlmoConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[OlmoDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = OlmoLayerNorm(config.hidden_size)
class OlmoForCausalLM(LlamaForCausalLM):
pass
__all__ = [
"OlmoForCausalLM",
"OlmoModel",
"OlmoPreTrainedModel", # noqa: F822
]