team-10/venv/Lib/site-packages/transformers/models/owlv2/modular_owlv2.py
2025-08-02 02:00:33 +02:00

240 lines
8.9 KiB
Python

# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Image processor class for OWLv2."""
import warnings
from typing import Optional, Union
from transformers.models.owlvit.image_processing_owlvit_fast import OwlViTImageProcessorFast
from ...image_processing_utils_fast import (
BatchFeature,
DefaultFastImageProcessorKwargs,
)
from ...image_transforms import group_images_by_shape, reorder_images
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
SizeDict,
)
from ...processing_utils import Unpack
from ...utils import (
TensorType,
auto_docstring,
is_torch_available,
is_torchvision_available,
is_torchvision_v2_available,
)
if is_torch_available():
import torch
if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
elif is_torchvision_available():
from torchvision.transforms import functional as F
class Owlv2FastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
r"""
do_pad (`bool`, *optional*, defaults to `True`):
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
method. If `True`, padding will be applied to the bottom and right of the image with grey pixels.
"""
do_pad: Optional[bool]
@auto_docstring
class Owlv2ImageProcessorFast(OwlViTImageProcessorFast):
resample = PILImageResampling.BILINEAR
image_mean = OPENAI_CLIP_MEAN
image_std = OPENAI_CLIP_STD
size = {"height": 960, "width": 960}
rescale_factor = 1 / 255
do_resize = True
do_rescale = True
do_normalize = True
do_pad = True
valid_kwargs = Owlv2FastImageProcessorKwargs
crop_size = None
do_center_crop = None
def __init__(self, **kwargs: Unpack[Owlv2FastImageProcessorKwargs]):
OwlViTImageProcessorFast().__init__(**kwargs)
@auto_docstring
def preprocess(self, images: ImageInput, **kwargs: Unpack[Owlv2FastImageProcessorKwargs]):
return OwlViTImageProcessorFast().preprocess(images, **kwargs)
def _pad_images(self, images: "torch.Tensor", constant_value: float = 0.5) -> "torch.Tensor":
"""
Pad an image with zeros to the given size.
"""
height, width = images.shape[-2:]
size = max(height, width)
pad_bottom = size - height
pad_right = size - width
padding = (0, 0, pad_right, pad_bottom)
padded_image = F.pad(images, padding, fill=constant_value)
return padded_image
def pad(
self,
images: list["torch.Tensor"],
disable_grouping: Optional[bool],
constant_value: float = 0.5,
) -> list["torch.Tensor"]:
grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping)
processed_images_grouped = {}
for shape, stacked_images in grouped_images.items():
stacked_images = self._pad_images(
stacked_images,
constant_value=constant_value,
)
processed_images_grouped[shape] = stacked_images
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
return processed_images
def resize(
self,
image: "torch.Tensor",
size: SizeDict,
anti_aliasing: bool = True,
anti_aliasing_sigma=None,
**kwargs,
) -> "torch.Tensor":
"""
Resize an image as per the original implementation.
Args:
image (`Tensor`):
Image to resize.
size (`dict[str, int]`):
Dictionary containing the height and width to resize the image to.
anti_aliasing (`bool`, *optional*, defaults to `True`):
Whether to apply anti-aliasing when downsampling the image.
anti_aliasing_sigma (`float`, *optional*, defaults to `None`):
Standard deviation for Gaussian kernel when downsampling the image. If `None`, it will be calculated
automatically.
"""
output_shape = (size.height, size.width)
input_shape = image.shape
# select height and width from input tensor
factors = torch.tensor(input_shape[2:]).to(image.device) / torch.tensor(output_shape).to(image.device)
if anti_aliasing:
if anti_aliasing_sigma is None:
anti_aliasing_sigma = ((factors - 1) / 2).clamp(min=0)
else:
anti_aliasing_sigma = torch.atleast_1d(anti_aliasing_sigma) * torch.ones_like(factors)
if torch.any(anti_aliasing_sigma < 0):
raise ValueError("Anti-aliasing standard deviation must be greater than or equal to zero")
elif torch.any((anti_aliasing_sigma > 0) & (factors <= 1)):
warnings.warn(
"Anti-aliasing standard deviation greater than zero but not down-sampling along all axes"
)
if torch.any(anti_aliasing_sigma == 0):
filtered = image
else:
kernel_sizes = 2 * torch.ceil(3 * anti_aliasing_sigma).int() + 1
filtered = F.gaussian_blur(
image, (kernel_sizes[0], kernel_sizes[1]), sigma=anti_aliasing_sigma.tolist()
)
else:
filtered = image
out = F.resize(filtered, size=(size.height, size.width), antialias=False)
return out
def _preprocess(
self,
images: list["torch.Tensor"],
do_resize: bool,
size: SizeDict,
interpolation: Optional["F.InterpolationMode"],
do_pad: bool,
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
image_mean: Optional[Union[float, list[float]]],
image_std: Optional[Union[float, list[float]]],
disable_grouping: Optional[bool],
return_tensors: Optional[Union[str, TensorType]],
**kwargs,
) -> BatchFeature:
# Group images by size for batched resizing
grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping)
processed_images_grouped = {}
for shape, stacked_images in grouped_images.items():
# Rescale images before other operations as done in original implementation
stacked_images = self.rescale_and_normalize(
stacked_images, do_rescale, rescale_factor, False, image_mean, image_std
)
processed_images_grouped[shape] = stacked_images
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
if do_pad:
processed_images = self.pad(processed_images, disable_grouping=disable_grouping)
grouped_images, grouped_images_index = group_images_by_shape(
processed_images, disable_grouping=disable_grouping
)
resized_images_grouped = {}
for shape, stacked_images in grouped_images.items():
if do_resize:
resized_stack = self.resize(
image=stacked_images,
size=size,
interpolation=interpolation,
input_data_format=ChannelDimension.FIRST,
)
resized_images_grouped[shape] = resized_stack
resized_images = reorder_images(resized_images_grouped, grouped_images_index)
# Group images by size for further processing
# Needed in case do_resize is False, or resize returns images with different sizes
grouped_images, grouped_images_index = group_images_by_shape(resized_images, disable_grouping=disable_grouping)
processed_images_grouped = {}
for shape, stacked_images in grouped_images.items():
# Fused rescale and normalize
stacked_images = self.rescale_and_normalize(
stacked_images, False, rescale_factor, do_normalize, image_mean, image_std
)
processed_images_grouped[shape] = stacked_images
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
return BatchFeature(data={"pixel_values": processed_images}, tensor_type=return_tensors)
__all__ = ["Owlv2ImageProcessorFast"]