team-10/venv/Lib/site-packages/transformers/models/pixtral/processing_pixtral.py
2025-08-02 02:00:33 +02:00

294 lines
13 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Pixtral.
"""
from typing import Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, is_valid_image, load_image
from ...processing_utils import (
MultiModalData,
ProcessingKwargs,
ProcessorMixin,
Unpack,
)
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import is_vision_available, logging
if is_vision_available():
from .image_processing_pixtral import get_resize_output_image_size
logger = logging.get_logger(__name__)
class PixtralProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
"return_mm_token_type_ids": False,
},
"images_kwargs": {},
"common_kwargs": {
"return_tensors": "pt",
},
}
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
class PixtralProcessor(ProcessorMixin):
r"""
Constructs a Pixtral processor which wraps a Pixtral image processor and a Pixtral tokenizer into a single processor.
[`PixtralProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~PixtralProcessor.__call__`] and [`~PixtralProcessor.decode`] for more information.
Args:
image_processor ([`PixtralImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
patch_size (`int`, *optional*, defaults to 16):
Patch size from the vision tower.
spatial_merge_size (`int`, *optional*, defaults to 1):
The downsampling factor for the spatial merge operation.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
image_token (`str`, *optional*, defaults to `"[IMG]"`):
Special token used to denote image location.
image_break_token (`str`, *optional*, defaults to `"[IMG_BREAK]"`):
Special token used to denote the end of a line of pixels in an image.
image_end_token (`str`, *optional*, defaults to `"[IMG_END]"`):
Special token used to denote the end of an image input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
patch_size: int = 16,
spatial_merge_size: int = 1,
chat_template=None,
image_token="[IMG]", # set the default and let users change if they have peculiar special tokens in rare cases
image_break_token="[IMG_BREAK]",
image_end_token="[IMG_END]",
**kwargs,
):
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.image_token = image_token
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
self.image_break_token = image_break_token
self.image_end_token = image_end_token
self.image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
self.image_break_token_id = tokenizer.convert_tokens_to_ids(self.image_break_token)
self.image_end_token_id = tokenizer.convert_tokens_to_ids(self.image_end_token)
self.image_ids = [self.image_token_id, self.image_break_token_id, self.image_end_token_id]
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[PixtralProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
PixtralProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
patch_size = self.patch_size * self.spatial_merge_size
if images is not None:
if is_image_or_image_url(images):
images = [images]
elif isinstance(images, (list, tuple)) and is_image_or_image_url(images[0]):
pass
elif (
isinstance(images, (list, tuple))
and isinstance(images[0], (list, tuple))
and is_image_or_image_url(images[0][0])
):
images = [image for sublist in images for image in sublist]
else:
raise ValueError(
"Invalid input images. Please provide a single image, a list of images, or a list of lists of images."
)
images = [load_image(im) if isinstance(im, str) else im for im in images]
image_inputs = self.image_processor(images, patch_size=patch_size, **output_kwargs["images_kwargs"])
else:
image_inputs = {}
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise TypeError("Invalid input text. Please provide a string, or a list of strings")
# try to expand inputs in processing if we have the necessary parts
prompt_strings = text
if image_inputs.get("pixel_values") is not None:
# Replace the image token with the expanded image token sequence
image_sizes = iter(image_inputs["image_sizes"])
prompt_strings = []
replace_strings = []
for sample in text:
while self.image_token in sample:
height, width = next(image_sizes)
num_height_tokens = height // patch_size
num_width_tokens = width // patch_size
replace_tokens = [
[self.image_token] * num_width_tokens + [self.image_break_token]
] * num_height_tokens
# Flatten list
replace_tokens = [item for sublist in replace_tokens for item in sublist]
replace_tokens[-1] = self.image_end_token
replace_str = "".join(replace_tokens)
replace_strings.append(replace_str)
sample = sample.replace(self.image_token, "<placeholder>", 1)
while "<placeholder>" in sample:
replace_str = replace_strings.pop(0)
sample = sample.replace("<placeholder>", replace_str, 1)
prompt_strings.append(sample)
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None)
self._check_special_mm_tokens(prompt_strings, text_inputs, modalities=["image"])
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[np.isin(array_ids, self.image_ids)] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
images_kwargs = PixtralProcessorKwargs._defaults.get("images_kwargs", {})
images_kwargs.update(kwargs)
size = images_kwargs.get("size", None) or self.image_processor.size
patch_size = self.patch_size * self.spatial_merge_size
num_image_tokens = []
for height, width in image_sizes:
resized_height, resized_width = get_resize_output_image_size(
np.zeros((height, width, 3)),
size=(size["longest_edge"], size["longest_edge"]),
patch_size=(patch_size, patch_size),
)
num_height_tokens = resized_height // patch_size
num_width_tokens = resized_width // patch_size
num_image_tokens.append((num_width_tokens + 1) * num_height_tokens)
num_image_patches = [1] * len(image_sizes)
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
return MultiModalData(**vision_data)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["PixtralProcessor"]