team-10/venv/Lib/site-packages/transformers/models/qwen3/modular_qwen3.py
2025-08-02 02:00:33 +02:00

172 lines
6 KiB
Python

# coding=utf-8
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Qwen3 model."""
from typing import Callable, Optional
import torch
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import CausalLMOutputWithPast
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, logging
from ..gemma.modeling_gemma import GemmaMLP
from ..llama.modeling_llama import (
LlamaAttention,
)
from ..qwen2.modeling_qwen2 import (
Qwen2DecoderLayer,
Qwen2ForCausalLM,
Qwen2ForQuestionAnswering,
Qwen2ForSequenceClassification,
Qwen2ForTokenClassification,
Qwen2Model,
Qwen2PreTrainedModel,
Qwen2RMSNorm,
apply_rotary_pos_emb,
eager_attention_forward,
)
from .configuration_qwen3 import Qwen3Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Qwen/Qwen3-8B"
class Qwen3RMSNorm(Qwen2RMSNorm):
pass
class Qwen3MLP(GemmaMLP):
pass
class Qwen3Attention(LlamaAttention):
def __init__(self, config: Qwen3Config, layer_idx: int):
super().__init__(config, layer_idx)
self.q_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
self.k_norm = Qwen3RMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window, # diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Qwen3DecoderLayer(Qwen2DecoderLayer):
pass
class Qwen3PreTrainedModel(Qwen2PreTrainedModel):
pass
class Qwen3Model(Qwen2Model):
pass
class Qwen3ForCausalLM(Qwen2ForCausalLM):
def forward(
self,
**super_kwargs: Unpack[TransformersKwargs],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer, Qwen3ForCausalLM
>>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
return super().forward(**super_kwargs)
class Qwen3ForSequenceClassification(Qwen2ForSequenceClassification):
pass
class Qwen3ForTokenClassification(Qwen2ForTokenClassification):
pass
class Qwen3ForQuestionAnswering(Qwen2ForQuestionAnswering):
pass
__all__ = [
"Qwen3ForCausalLM",
"Qwen3ForQuestionAnswering",
"Qwen3PreTrainedModel",
"Qwen3Model",
"Qwen3ForSequenceClassification",
"Qwen3ForTokenClassification",
]