team-10/venv/Lib/site-packages/transformers/models/starcoder2/modular_starcoder2.py
2025-08-02 02:00:33 +02:00

237 lines
9.5 KiB
Python

# coding=utf-8
# Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Starcoder2 model."""
from typing import Callable, Optional, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.utils.generic import check_model_inputs
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutputWithPast
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, logging
from ..mistral.modeling_mistral import (
MistralAttention,
MistralDecoderLayer,
MistralForCausalLM,
MistralForSequenceClassification,
MistralForTokenClassification,
MistralModel,
MistralRotaryEmbedding,
apply_rotary_pos_emb,
eager_attention_forward,
)
from .configuration_starcoder2 import Starcoder2Config
logger = logging.get_logger(__name__)
class Starcoder2MLP(nn.Module):
def __init__(self, config: Starcoder2Config):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias)
self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias)
self.act = ACT2FN[config.hidden_act]
self.residual_dropout = config.residual_dropout
def forward(self, hidden_states: Optional[tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training)
return hidden_states
class Starcoder2Attention(MistralAttention):
def __init__(self, config: Starcoder2Config, layer_idx: Optional[int] = None):
super().__init__()
self.residual_dropout = config.residual_dropout
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None), # diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
attn_output = nn.functional.dropout(
attn_output, p=self.residual_dropout, training=self.training
) # diff with Llama
return attn_output, attn_weights
class Starcoder2DecoderLayer(MistralDecoderLayer):
def __init__(self, config: Starcoder2Config, layer_idx: int):
super().__init__(self)
self.self_attn = Starcoder2Attention(config=config, layer_idx=layer_idx)
self.mlp = Starcoder2MLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
class Starcoder2RotaryEmbedding(MistralRotaryEmbedding):
pass
class Starcoder2Model(MistralModel):
def __init__(self, config: Starcoder2Config):
super().__init__(config)
self.layers = nn.ModuleList(
[Starcoder2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
self.embedding_dropout = config.embedding_dropout
@check_model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
causal_mask = mask_function(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(
hidden_states, p=self.embedding_dropout, training=self.training
) # main diff with Llama
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
)
class Starcoder2ForCausalLM(MistralForCausalLM):
pass
class Starcoder2ForSequenceClassification(MistralForSequenceClassification):
pass
class Starcoder2ForTokenClassification(MistralForTokenClassification):
pass
__all__ = [
"Starcoder2ForCausalLM",
"Starcoder2Model",
"Starcoder2PreTrainedModel", # noqa: F822
"Starcoder2ForSequenceClassification",
"Starcoder2ForTokenClassification",
]