team-10/venv/Lib/site-packages/transformers/models/superglue/configuration_superglue.py
2025-08-02 02:00:33 +02:00

120 lines
5.3 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
if TYPE_CHECKING:
from ..superpoint import SuperPointConfig
logger = logging.get_logger(__name__)
class SuperGlueConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SuperGlueModel`]. It is used to instantiate a
SuperGlue model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SuperGlue
[magic-leap-community/superglue_indoor](https://huggingface.co/magic-leap-community/superglue_indoor) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
keypoint_detector_config (`Union[AutoConfig, dict]`, *optional*, defaults to `SuperPointConfig`):
The config object or dictionary of the keypoint detector.
hidden_size (`int`, *optional*, defaults to 256):
The dimension of the descriptors.
keypoint_encoder_sizes (`list[int]`, *optional*, defaults to `[32, 64, 128, 256]`):
The sizes of the keypoint encoder layers.
gnn_layers_types (`list[str]`, *optional*, defaults to `['self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross']`):
The types of the GNN layers. Must be either 'self' or 'cross'.
num_attention_heads (`int`, *optional*, defaults to 4):
The number of heads in the GNN layers.
sinkhorn_iterations (`int`, *optional*, defaults to 100):
The number of Sinkhorn iterations.
matching_threshold (`float`, *optional*, defaults to 0.0):
The matching threshold.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Examples:
```python
>>> from transformers import SuperGlueConfig, SuperGlueModel
>>> # Initializing a SuperGlue superglue style configuration
>>> configuration = SuperGlueConfig()
>>> # Initializing a model from the superglue style configuration
>>> model = SuperGlueModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "superglue"
def __init__(
self,
keypoint_detector_config: "SuperPointConfig" = None,
hidden_size: int = 256,
keypoint_encoder_sizes: Optional[list[int]] = None,
gnn_layers_types: Optional[list[str]] = None,
num_attention_heads: int = 4,
sinkhorn_iterations: int = 100,
matching_threshold: float = 0.0,
initializer_range: float = 0.02,
**kwargs,
):
self.gnn_layers_types = gnn_layers_types if gnn_layers_types is not None else ["self", "cross"] * 9
# Check whether all gnn_layers_types are either 'self' or 'cross'
if not all(layer_type in ["self", "cross"] for layer_type in self.gnn_layers_types):
raise ValueError("All gnn_layers_types must be either 'self' or 'cross'")
if hidden_size % num_attention_heads != 0:
raise ValueError("hidden_size % num_attention_heads is different from zero")
self.keypoint_encoder_sizes = (
keypoint_encoder_sizes if keypoint_encoder_sizes is not None else [32, 64, 128, 256]
)
self.hidden_size = hidden_size
self.keypoint_encoder_sizes = keypoint_encoder_sizes
self.gnn_layers_types = gnn_layers_types
self.num_attention_heads = num_attention_heads
self.sinkhorn_iterations = sinkhorn_iterations
self.matching_threshold = matching_threshold
if isinstance(keypoint_detector_config, dict):
keypoint_detector_config["model_type"] = (
keypoint_detector_config["model_type"] if "model_type" in keypoint_detector_config else "superpoint"
)
keypoint_detector_config = CONFIG_MAPPING[keypoint_detector_config["model_type"]](
**keypoint_detector_config
)
if keypoint_detector_config is None:
keypoint_detector_config = CONFIG_MAPPING["superpoint"]()
self.keypoint_detector_config = keypoint_detector_config
self.initializer_range = initializer_range
self.attention_probs_dropout_prob = 0
self.is_decoder = False
super().__init__(**kwargs)
__all__ = ["SuperGlueConfig"]