team-10/venv/Lib/site-packages/transformers/models/vitpose/configuration_vitpose.py
2025-08-02 02:00:33 +02:00

126 lines
5.7 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VitPose model configuration"""
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import verify_backbone_config_arguments
from ..auto.configuration_auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class VitPoseConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VitPoseForPoseEstimation`]. It is used to instantiate a
VitPose model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the VitPose
[usyd-community/vitpose-base-simple](https://huggingface.co/usyd-community/vitpose-base-simple) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `VitPoseBackboneConfig()`):
The configuration of the backbone model. Currently, only `backbone_config` with `vitpose_backbone` as `model_type` is supported.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, defaults to `False`):
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
library.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_factor (`int`, *optional*, defaults to 4):
Factor to upscale the feature maps coming from the ViT backbone.
use_simple_decoder (`bool`, *optional*, defaults to `True`):
Whether to use a `VitPoseSimpleDecoder` to decode the feature maps from the backbone into heatmaps. Otherwise it uses `VitPoseClassicDecoder`.
Example:
```python
>>> from transformers import VitPoseConfig, VitPoseForPoseEstimation
>>> # Initializing a VitPose configuration
>>> configuration = VitPoseConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = VitPoseForPoseEstimation(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vitpose"
def __init__(
self,
backbone_config: Optional[PretrainedConfig] = None,
backbone: Optional[str] = None,
use_pretrained_backbone: bool = False,
use_timm_backbone: bool = False,
backbone_kwargs: Optional[dict] = None,
initializer_range: float = 0.02,
scale_factor: int = 4,
use_simple_decoder: bool = True,
**kwargs,
):
super().__init__(**kwargs)
if use_pretrained_backbone:
logger.info(
"`use_pretrained_backbone` is `True`. For the pure inference purpose of VitPose weight do not set this value."
)
if use_timm_backbone:
raise ValueError("use_timm_backbone set `True` is not supported at the moment.")
if backbone_config is None and backbone is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `VitPose` backbone.")
backbone_config = CONFIG_MAPPING["vitpose_backbone"](out_indices=[4])
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
verify_backbone_config_arguments(
use_timm_backbone=use_timm_backbone,
use_pretrained_backbone=use_pretrained_backbone,
backbone=backbone,
backbone_config=backbone_config,
backbone_kwargs=backbone_kwargs,
)
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.backbone_kwargs = backbone_kwargs
self.initializer_range = initializer_range
self.scale_factor = scale_factor
self.use_simple_decoder = use_simple_decoder
__all__ = ["VitPoseConfig"]