159 lines
6.3 KiB
Python
159 lines
6.3 KiB
Python
from __future__ import annotations
|
|
|
|
import collections
|
|
from typing import TYPE_CHECKING, Any, ClassVar
|
|
|
|
import pyarrow as pa
|
|
import pyarrow.compute as pc
|
|
|
|
from narwhals._arrow.utils import cast_to_comparable_string_types, extract_py_scalar
|
|
from narwhals._compliant import EagerGroupBy
|
|
from narwhals._expression_parsing import evaluate_output_names_and_aliases
|
|
from narwhals._utils import generate_temporary_column_name
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import Iterator, Mapping, Sequence
|
|
|
|
from narwhals._arrow.dataframe import ArrowDataFrame
|
|
from narwhals._arrow.expr import ArrowExpr
|
|
from narwhals._arrow.typing import ( # type: ignore[attr-defined]
|
|
AggregateOptions,
|
|
Aggregation,
|
|
Incomplete,
|
|
)
|
|
from narwhals._compliant.typing import NarwhalsAggregation
|
|
from narwhals.typing import UniqueKeepStrategy
|
|
|
|
|
|
class ArrowGroupBy(EagerGroupBy["ArrowDataFrame", "ArrowExpr", "Aggregation"]):
|
|
_REMAP_AGGS: ClassVar[Mapping[NarwhalsAggregation, Aggregation]] = {
|
|
"sum": "sum",
|
|
"mean": "mean",
|
|
"median": "approximate_median",
|
|
"max": "max",
|
|
"min": "min",
|
|
"std": "stddev",
|
|
"var": "variance",
|
|
"len": "count",
|
|
"n_unique": "count_distinct",
|
|
"count": "count",
|
|
"all": "all",
|
|
"any": "any",
|
|
}
|
|
_REMAP_UNIQUE: ClassVar[Mapping[UniqueKeepStrategy, Aggregation]] = {
|
|
"any": "min",
|
|
"first": "min",
|
|
"last": "max",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
df: ArrowDataFrame,
|
|
keys: Sequence[ArrowExpr] | Sequence[str],
|
|
/,
|
|
*,
|
|
drop_null_keys: bool,
|
|
) -> None:
|
|
self._df = df
|
|
frame, self._keys, self._output_key_names = self._parse_keys(df, keys=keys)
|
|
self._compliant_frame = frame.drop_nulls(self._keys) if drop_null_keys else frame
|
|
self._grouped = pa.TableGroupBy(self.compliant.native, self._keys)
|
|
self._drop_null_keys = drop_null_keys
|
|
|
|
def agg(self, *exprs: ArrowExpr) -> ArrowDataFrame:
|
|
self._ensure_all_simple(exprs)
|
|
aggs: list[tuple[str, Aggregation, AggregateOptions | None]] = []
|
|
expected_pyarrow_column_names: list[str] = self._keys.copy()
|
|
new_column_names: list[str] = self._keys.copy()
|
|
exclude = (*self._keys, *self._output_key_names)
|
|
|
|
for expr in exprs:
|
|
output_names, aliases = evaluate_output_names_and_aliases(
|
|
expr, self.compliant, exclude
|
|
)
|
|
|
|
if expr._depth == 0:
|
|
# e.g. `agg(nw.len())`
|
|
if expr._function_name != "len": # pragma: no cover
|
|
msg = "Safety assertion failed, please report a bug to https://github.com/narwhals-dev/narwhals/issues"
|
|
raise AssertionError(msg)
|
|
|
|
new_column_names.append(aliases[0])
|
|
expected_pyarrow_column_names.append(f"{self._keys[0]}_count")
|
|
aggs.append((self._keys[0], "count", pc.CountOptions(mode="all")))
|
|
continue
|
|
|
|
function_name = self._leaf_name(expr)
|
|
if function_name in {"std", "var"}:
|
|
assert "ddof" in expr._scalar_kwargs # noqa: S101
|
|
option: Any = pc.VarianceOptions(ddof=expr._scalar_kwargs["ddof"])
|
|
elif function_name in {"len", "n_unique"}:
|
|
option = pc.CountOptions(mode="all")
|
|
elif function_name == "count":
|
|
option = pc.CountOptions(mode="only_valid")
|
|
elif function_name in {"all", "any"}:
|
|
option = pc.ScalarAggregateOptions(min_count=0)
|
|
else:
|
|
option = None
|
|
|
|
function_name = self._remap_expr_name(function_name)
|
|
new_column_names.extend(aliases)
|
|
expected_pyarrow_column_names.extend(
|
|
[f"{output_name}_{function_name}" for output_name in output_names]
|
|
)
|
|
aggs.extend(
|
|
[(output_name, function_name, option) for output_name in output_names]
|
|
)
|
|
|
|
result_simple = self._grouped.aggregate(aggs)
|
|
|
|
# Rename columns, being very careful
|
|
expected_old_names_indices: dict[str, list[int]] = collections.defaultdict(list)
|
|
for idx, item in enumerate(expected_pyarrow_column_names):
|
|
expected_old_names_indices[item].append(idx)
|
|
if not (
|
|
set(result_simple.column_names) == set(expected_pyarrow_column_names)
|
|
and len(result_simple.column_names) == len(expected_pyarrow_column_names)
|
|
): # pragma: no cover
|
|
msg = (
|
|
f"Safety assertion failed, expected {expected_pyarrow_column_names} "
|
|
f"got {result_simple.column_names}, "
|
|
"please report a bug at https://github.com/narwhals-dev/narwhals/issues"
|
|
)
|
|
raise AssertionError(msg)
|
|
index_map: list[int] = [
|
|
expected_old_names_indices[item].pop(0) for item in result_simple.column_names
|
|
]
|
|
new_column_names = [new_column_names[i] for i in index_map]
|
|
result_simple = result_simple.rename_columns(new_column_names)
|
|
return self.compliant._with_native(result_simple).rename(
|
|
dict(zip(self._keys, self._output_key_names))
|
|
)
|
|
|
|
def __iter__(self) -> Iterator[tuple[Any, ArrowDataFrame]]:
|
|
col_token = generate_temporary_column_name(
|
|
n_bytes=8, columns=self.compliant.columns
|
|
)
|
|
null_token: str = "__null_token_value__" # noqa: S105
|
|
|
|
table = self.compliant.native
|
|
it, separator_scalar = cast_to_comparable_string_types(
|
|
*(table[key] for key in self._keys), separator=""
|
|
)
|
|
# NOTE: stubs indicate `separator` must also be a `ChunkedArray`
|
|
# Reality: `str` is fine
|
|
concat_str: Incomplete = pc.binary_join_element_wise
|
|
key_values = concat_str(
|
|
*it, separator_scalar, null_handling="replace", null_replacement=null_token
|
|
)
|
|
table = table.add_column(i=0, field_=col_token, column=key_values)
|
|
|
|
for v in pc.unique(key_values):
|
|
t = self.compliant._with_native(
|
|
table.filter(pc.equal(table[col_token], v)).drop([col_token])
|
|
)
|
|
row = t.simple_select(*self._keys).row(0)
|
|
yield (
|
|
tuple(extract_py_scalar(el) for el in row),
|
|
t.simple_select(*self._df.columns),
|
|
)
|