team-10/env/Lib/site-packages/narwhals/selectors.py
2025-08-02 07:34:44 +02:00

353 lines
10 KiB
Python

from __future__ import annotations
from typing import TYPE_CHECKING, Any, NoReturn
from narwhals._expression_parsing import ExprMetadata, combine_metadata
from narwhals._utils import flatten
from narwhals.expr import Expr
if TYPE_CHECKING:
from collections.abc import Iterable
from datetime import timezone
from narwhals.dtypes import DType
from narwhals.typing import TimeUnit
class Selector(Expr):
def _to_expr(self) -> Expr:
return Expr(self._to_compliant_expr, self._metadata)
def __add__(self, other: Any) -> Expr: # type: ignore[override]
if isinstance(other, Selector):
msg = "unsupported operand type(s) for op: ('Selector' + 'Selector')"
raise TypeError(msg)
return self._to_expr() + other # type: ignore[no-any-return]
def __or__(self, other: Any) -> Expr: # type: ignore[override]
if isinstance(other, Selector):
return self.__class__(
lambda plx: self._to_compliant_expr(plx) | other._to_compliant_expr(plx),
combine_metadata(
self,
other,
str_as_lit=False,
allow_multi_output=True,
to_single_output=False,
),
)
return self._to_expr() | other # type: ignore[no-any-return]
def __and__(self, other: Any) -> Expr: # type: ignore[override]
if isinstance(other, Selector):
return self.__class__(
lambda plx: self._to_compliant_expr(plx) & other._to_compliant_expr(plx),
combine_metadata(
self,
other,
str_as_lit=False,
allow_multi_output=True,
to_single_output=False,
),
)
return self._to_expr() & other # type: ignore[no-any-return]
def __rsub__(self, other: Any) -> NoReturn:
raise NotImplementedError
def __rand__(self, other: Any) -> NoReturn:
raise NotImplementedError
def __ror__(self, other: Any) -> NoReturn:
raise NotImplementedError
def by_dtype(*dtypes: DType | type[DType] | Iterable[DType | type[DType]]) -> Selector:
"""Select columns based on their dtype.
Arguments:
dtypes: one or data types to select
Returns:
A new expression.
Examples:
>>> import pyarrow as pa
>>> import narwhals as nw
>>> import narwhals.selectors as ncs
>>> df_native = pa.table({"a": [1, 2], "b": ["x", "y"], "c": [4.1, 2.3]})
>>> df = nw.from_native(df_native)
Let's select int64 and float64 dtypes and multiply each value by 2:
>>> df.select(ncs.by_dtype(nw.Int64, nw.Float64) * 2).to_native()
pyarrow.Table
a: int64
c: double
----
a: [[2,4]]
c: [[8.2,4.6]]
"""
flattened = flatten(dtypes)
return Selector(
lambda plx: plx.selectors.by_dtype(flattened),
ExprMetadata.selector_multi_unnamed(),
)
def matches(pattern: str) -> Selector:
"""Select all columns that match the given regex pattern.
Arguments:
pattern: A valid regular expression pattern.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> import narwhals.selectors as ncs
>>> df_native = pd.DataFrame(
... {"bar": [123, 456], "baz": [2.0, 5.5], "zap": [0, 1]}
... )
>>> df = nw.from_native(df_native)
Let's select column names containing an 'a', preceded by a character that is not 'z':
>>> df.select(ncs.matches("[^z]a")).to_native()
bar baz
0 123 2.0
1 456 5.5
"""
return Selector(
lambda plx: plx.selectors.matches(pattern), ExprMetadata.selector_multi_unnamed()
)
def numeric() -> Selector:
"""Select numeric columns.
Returns:
A new expression.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> import narwhals.selectors as ncs
>>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [4.1, 2.3]})
>>> df = nw.from_native(df_native)
Let's select numeric dtypes and multiply each value by 2:
>>> df.select(ncs.numeric() * 2).to_native()
shape: (2, 2)
┌─────┬─────┐
│ a ┆ c │
│ --- ┆ --- │
│ i64 ┆ f64 │
╞═════╪═════╡
│ 2 ┆ 8.2 │
│ 4 ┆ 4.6 │
└─────┴─────┘
"""
return Selector(
lambda plx: plx.selectors.numeric(), ExprMetadata.selector_multi_unnamed()
)
def boolean() -> Selector:
"""Select boolean columns.
Returns:
A new expression.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> import narwhals.selectors as ncs
>>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
>>> df = nw.from_native(df_native)
Let's select boolean dtypes:
>>> df.select(ncs.boolean())
┌──────────────────┐
|Narwhals DataFrame|
|------------------|
| shape: (2, 1) |
| ┌───────┐ |
| │ c │ |
| │ --- │ |
| │ bool │ |
| ╞═══════╡ |
| │ false │ |
| │ true │ |
| └───────┘ |
└──────────────────┘
"""
return Selector(
lambda plx: plx.selectors.boolean(), ExprMetadata.selector_multi_unnamed()
)
def string() -> Selector:
"""Select string columns.
Returns:
A new expression.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> import narwhals.selectors as ncs
>>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
>>> df = nw.from_native(df_native)
Let's select string dtypes:
>>> df.select(ncs.string()).to_native()
shape: (2, 1)
┌─────┐
│ b │
│ --- │
│ str │
╞═════╡
│ x │
│ y │
└─────┘
"""
return Selector(
lambda plx: plx.selectors.string(), ExprMetadata.selector_multi_unnamed()
)
def categorical() -> Selector:
"""Select categorical columns.
Returns:
A new expression.
Examples:
>>> import polars as pl
>>> import narwhals as nw
>>> import narwhals.selectors as ncs
>>> df_native = pl.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
Let's convert column "b" to categorical, and then select categorical dtypes:
>>> df = nw.from_native(df_native).with_columns(
... b=nw.col("b").cast(nw.Categorical())
... )
>>> df.select(ncs.categorical()).to_native()
shape: (2, 1)
┌─────┐
│ b │
│ --- │
│ cat │
╞═════╡
│ x │
│ y │
└─────┘
"""
return Selector(
lambda plx: plx.selectors.categorical(), ExprMetadata.selector_multi_unnamed()
)
def all() -> Selector:
"""Select all columns.
Returns:
A new expression.
Examples:
>>> import pandas as pd
>>> import narwhals as nw
>>> import narwhals.selectors as ncs
>>> df_native = pd.DataFrame({"a": [1, 2], "b": ["x", "y"], "c": [False, True]})
>>> df = nw.from_native(df_native)
Let's select all dtypes:
>>> df.select(ncs.all()).to_native()
a b c
0 1 x False
1 2 y True
"""
return Selector(
lambda plx: plx.selectors.all(), ExprMetadata.selector_multi_unnamed()
)
def datetime(
time_unit: TimeUnit | Iterable[TimeUnit] | None = None,
time_zone: str | timezone | Iterable[str | timezone | None] | None = ("*", None),
) -> Selector:
"""Select all datetime columns, optionally filtering by time unit/zone.
Arguments:
time_unit: One (or more) of the allowed timeunit precision strings, "ms", "us",
"ns" and "s". Omit to select columns with any valid timeunit.
time_zone: Specify which timezone(s) to select
* One or more timezone strings, as defined in zoneinfo (to see valid options
run `import zoneinfo; zoneinfo.available_timezones()` for a full list).
* Set `None` to select Datetime columns that do not have a timezone.
* Set `"*"` to select Datetime columns that have *any* timezone.
Returns:
A new expression.
Examples:
>>> from datetime import datetime, timezone
>>> import pyarrow as pa
>>> import narwhals as nw
>>> import narwhals.selectors as ncs
>>>
>>> utc_tz = timezone.utc
>>> data = {
... "tstamp_utc": [
... datetime(2023, 4, 10, 12, 14, 16, 999000, tzinfo=utc_tz),
... datetime(2025, 8, 25, 14, 18, 22, 666000, tzinfo=utc_tz),
... ],
... "tstamp": [
... datetime(2000, 11, 20, 18, 12, 16, 600000),
... datetime(2020, 10, 30, 10, 20, 25, 123000),
... ],
... "numeric": [3.14, 6.28],
... }
>>> df_native = pa.table(data)
>>> df_nw = nw.from_native(df_native)
>>> df_nw.select(ncs.datetime()).to_native()
pyarrow.Table
tstamp_utc: timestamp[us, tz=UTC]
tstamp: timestamp[us]
----
tstamp_utc: [[2023-04-10 12:14:16.999000Z,2025-08-25 14:18:22.666000Z]]
tstamp: [[2000-11-20 18:12:16.600000,2020-10-30 10:20:25.123000]]
Select only datetime columns that have any time_zone specification:
>>> df_nw.select(ncs.datetime(time_zone="*")).to_native()
pyarrow.Table
tstamp_utc: timestamp[us, tz=UTC]
----
tstamp_utc: [[2023-04-10 12:14:16.999000Z,2025-08-25 14:18:22.666000Z]]
"""
return Selector(
lambda plx: plx.selectors.datetime(time_unit=time_unit, time_zone=time_zone),
ExprMetadata.selector_multi_unnamed(),
)
__all__ = [
"all",
"boolean",
"by_dtype",
"categorical",
"datetime",
"matches",
"numeric",
"string",
]