team-10/env/Lib/site-packages/scipy/optimize/_nnls.py
2025-08-02 07:34:44 +02:00

96 lines
2.8 KiB
Python

import numpy as np
from ._slsqplib import nnls as _nnls
from scipy._lib.deprecation import _deprecate_positional_args, _NoValue
__all__ = ['nnls']
@_deprecate_positional_args(version='1.18.0',
deprecated_args={'atol'})
def nnls(A, b, *, maxiter=None, atol=_NoValue):
"""
Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``.
This problem, often called as NonNegative Least Squares, is a convex
optimization problem with convex constraints. It typically arises when
the ``x`` models quantities for which only nonnegative values are
attainable; weight of ingredients, component costs and so on.
Parameters
----------
A : (m, n) ndarray
Coefficient array
b : (m,) ndarray, float
Right-hand side vector.
maxiter: int, optional
Maximum number of iterations, optional. Default value is ``3 * n``.
atol : float, optional
.. deprecated:: 1.18.0
This parameter is deprecated and will be removed in SciPy 1.18.0.
It is not used in the implementation.
Returns
-------
x : ndarray
Solution vector.
rnorm : float
The 2-norm of the residual, ``|| Ax-b ||_2``.
See Also
--------
lsq_linear : Linear least squares with bounds on the variables
Notes
-----
The code is based on the classical algorithm of [1]_. It utilizes an active
set method and solves the KKK (Karush-Kuhn-Tucker) conditions for the
non-negative least squares problem.
References
----------
.. [1] : Lawson C., Hanson R.J., "Solving Least Squares Problems", SIAM,
1995, :doi:`10.1137/1.9781611971217`
Examples
--------
>>> import numpy as np
>>> from scipy.optimize import nnls
...
>>> A = np.array([[1, 0], [1, 0], [0, 1]])
>>> b = np.array([2, 1, 1])
>>> nnls(A, b)
(array([1.5, 1. ]), 0.7071067811865475)
>>> b = np.array([-1, -1, -1])
>>> nnls(A, b)
(array([0., 0.]), 1.7320508075688772)
"""
A = np.asarray_chkfinite(A, dtype=np.float64, order='C')
b = np.asarray_chkfinite(b, dtype=np.float64)
if len(A.shape) != 2:
raise ValueError(f"Expected a 2D array, but the shape of A is {A.shape}")
if (b.ndim > 2) or ((b.ndim == 2) and (b.shape[1] != 1)):
raise ValueError("Expected a 1D array,(or 2D with one column), but the,"
f" shape of b is {b.shape}")
elif (b.ndim == 2) and (b.shape[1] == 1):
b = b.ravel()
m, n = A.shape
if m != b.shape[0]:
raise ValueError(
"Incompatible dimensions. The first dimension of " +
f"A is {m}, while the shape of b is {(b.shape[0], )}")
if not maxiter:
maxiter = 3*n
x, rnorm, info = _nnls(A, b, maxiter)
if info == 3:
raise RuntimeError("Maximum number of iterations reached.")
return x, rnorm