team-10/venv/Lib/site-packages/transformers/generation/candidate_generator.py
2025-08-02 02:00:33 +02:00

1230 lines
60 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import weakref
from typing import TYPE_CHECKING, Any, Optional
import numpy as np
import torch
import torch.nn as nn
from ..pytorch_utils import prune_linear_layer
from ..utils import is_sklearn_available
if is_sklearn_available():
from sklearn.metrics import roc_curve
from ..pytorch_utils import isin_mps_friendly
from .logits_process import LogitsProcessorList, MinLengthLogitsProcessor, SuppressTokensLogitsProcessor
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..tokenization_utils_base import PreTrainedTokenizerBase
from .configuration_utils import GenerationConfig
from ..utils.deprecation import deprecate_kwarg
class CandidateGenerator:
"""Abstract base class for all candidate generators that can be applied during assisted generation."""
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
Return:
`torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be
assessed by the model and, optionally, a `torch.FloatTensor` of shape `(batch_size, candidate_length,
vocabulary_size)` containing the logits associated to each candidate.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can call `get_candidates`."
)
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
"""
Updates the candidate generation strategy based on the outcomes.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
num_matches (`int`):
The number of matches between the candidate sequences and the model predictions.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can call "
"`update_candidate_strategy`."
)
class AssistedCandidateGenerator(CandidateGenerator):
"""
`CandidateGenerator` class to be used for assisted generation and speculative decoding. This class generates
candidates through the use of a smaller model. Read the following blog post for more information:
https://huggingface.co/blog/assisted-generation
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
assistant_model (`PreTrainedModel`):
The model to be used for generating candidates. This model should be smaller than the main model.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
model_kwargs (`Dict`):
The keyword arguments that will be passed to the main model, and are used as base inputs for the assistant
model as well.
inputs_tensor (`torch.Tensor`, *optional*):
The model input tensor. In encoder-decoder models, this is the encoder input.
"""
def __init__(
self,
input_ids: torch.LongTensor,
assistant_model: "PreTrainedModel",
generation_config: "GenerationConfig",
model_kwargs: dict,
inputs_tensor: Optional[torch.Tensor] = None,
logits_processor: "LogitsProcessorList" = None,
):
# Make sure all data at the same device as assistant model
device = assistant_model.device
input_ids = input_ids.to(device)
if inputs_tensor is not None:
inputs_tensor = inputs_tensor.to(device)
# Prepare the assistant and the starting number of candidate tokens
self.assistant_model = assistant_model
self.num_assistant_tokens = assistant_model.generation_config.num_assistant_tokens
self.assistant_confidence_threshold = assistant_model.generation_config.assistant_confidence_threshold
# Set eos in assistant same as in target model
self.assistant_model.generation_config.eos_token_id = generation_config.eos_token_id
# Prepare the kwargs for the assistant model
assistant_kwargs = {}
for key, value in model_kwargs.items(): # deepcopy crashes if we attempt to copy encoder outputs with grads
if key not in ("encoder_outputs", "past_key_values"):
assistant_kwargs[key] = (
value.detach().to(device) if isinstance(value, torch.Tensor) else copy.deepcopy(value)
)
# Remove potential default "logits_to_keep" key
if "logits_to_keep" in assistant_kwargs.keys() and not assistant_model._supports_logits_to_keep():
del assistant_kwargs["logits_to_keep"]
# If the assistant is an encoder-decoder model, assume the encoder is different on the assistant.
if assistant_model.config.is_encoder_decoder:
inputs_tensor, model_input_name, assistant_kwargs = assistant_model._prepare_model_inputs(
inputs_tensor, assistant_model.generation_config.bos_token_id, assistant_kwargs
)
assistant_kwargs = assistant_model._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, assistant_kwargs, model_input_name, assistant_model.generation_config
)
elif "encoder_outputs" in model_kwargs:
assistant_kwargs["encoder_outputs"] = model_kwargs["encoder_outputs"]
self.assistant_kwargs = assistant_kwargs
# Prepare assistant model's keys of inputs
if assistant_model.config.is_encoder_decoder:
# both are encoder-decoder
self.input_ids_key = "decoder_input_ids"
elif "encoder_outputs" in assistant_kwargs:
# special case for encoder-decoder with decoder-only assistant (like DistilWhisper)
self.input_ids_key = "input_ids"
self.assistant_kwargs["attention_mask"] = self.assistant_kwargs.get(
"decoder_attention_mask",
torch.ones((input_ids.shape[0], 1), device=input_ids.device, dtype=torch.long),
)
else:
# both are decoder-only
self.input_ids_key = "input_ids"
# Prepare generation-related options.
self.logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
self.generation_config = copy.deepcopy(generation_config)
self.generation_config.return_dict_in_generate = True
self.generation_config.output_scores = True
self.generation_config.assistant_confidence_threshold = self.assistant_confidence_threshold
# this flag allow us set the confidence stopping criteria for assistant model generation.
self.generation_config.is_assistant = True
# avoid unnecessary warnings that min_length is larger than max_new_tokens
# remove the `MinLengthLogitsProcessor` if exists (NOTE: no need to check for `MinNewTokensLogitsProcessor`)
self.main_model_min_length = self.generation_config.min_length
self.generation_config.min_length = 0
self.generation_config.min_new_tokens = None
for processor in self.logits_processor:
if isinstance(processor, MinLengthLogitsProcessor):
raise ValueError(
"Passing `MinLengthLogitsProcessor` when using `assisted_generation is disabled. "
"Please pass in `min_length` into `.generate()` instead"
)
# We need to roll back the cache in assisted generation, only DynamicCache is supported
self.generation_config.cache_implementation = None
if (
is_sklearn_available()
and self.assistant_model.generation_config.assistant_confidence_threshold
and type(self) is AssistedCandidateGenerator
):
self.probs = []
self.matches = []
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
Return:
`torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be
assessed by the model and a `torch.FloatTensor` of shape `(batch_size, candidate_length,
vocabulary_size)` containing the logits associated to each candidate.
"""
input_ids = input_ids.to(self.assistant_model.device)
# Calculate new tokens to generate
min_new_tokens, max_new_tokens = self._calculate_new_tokens(input_ids)
if max_new_tokens == 0:
return input_ids, None
# Update past key values and masks
self._update_past_and_masks(input_ids)
# Generate candidates
generation_args = self._prepare_generation_args(input_ids, min_new_tokens, max_new_tokens)
candidate_ids, candidate_logits = self._generate_candidates(generation_args)
return candidate_ids, candidate_logits
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
"""
Updates the candidate generation strategy based on the outcomes.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
num_matches (`int`):
The number of matches between the candidate sequences and the model predictions.
"""
# Adjust the max number of assistant tokens to use in the next iteration. This is a simple heuristic,
# probably can be improved -- we want to balance the benefits of getting assistant tokens correct with the
# cost of forecasting incorrect assistant tokens.
if self.assistant_model.generation_config.num_assistant_tokens_schedule in {
"heuristic",
"heuristic_transient",
}:
# len(scores[0])-1 is the number of candidates according to the target tokenizer.
if num_matches == len(scores[0]) - 1:
self.num_assistant_tokens += 2.0
else:
self.num_assistant_tokens = max(1.0, self.num_assistant_tokens - 1.0)
# The assistant's confidence threshold is adjusted throughout the speculative iterations to reduce the number of unnecessary draft and target forward passes. The costs are estimated based on the ROC curve, which considers the probability of the draft token and its match with the target. A cost of 25% is assigned to false positives and 75% to false negatives.
# This adaptation is not compatible with UAG, as it relies on the number of matched tokens based on the draft vocabulary, which is unavailable in UAG.
if (
is_sklearn_available()
and self.assistant_model.generation_config.assistant_confidence_threshold
and type(self) is AssistedCandidateGenerator
):
# update self.matches
self.matches.extend([1] * num_matches)
if len(self.probs) > len(self.matches):
self.matches.append(0)
# update self.probs
excess_length = len(self.probs) - len(self.matches)
if excess_length > 0:
del self.probs[-excess_length:]
if (
len(self.probs) > 5 and {0, 1}.issubset(self.matches)
): # require at least 5 samples to calculate the ROC curve and at least one positive and one negative sample
fpr, tpr, thresholds = roc_curve(self.matches, self.probs)
fnr = 1 - tpr
# Calculate the cost for each threshold
costs = fpr + 3 * fnr
# Find the threshold that minimizes the cost
optimal_threshold_index = np.argmin(costs)
best_threshold = thresholds[optimal_threshold_index]
self.assistant_model.generation_config.assistant_confidence_threshold = best_threshold
def _calculate_new_tokens(self, input_ids: torch.LongTensor) -> tuple[int, int]:
"""Calculate the minimum and maximum number of new tokens to generate."""
new_cur_len = input_ids.shape[-1]
max_new_tokens = min(int(self.num_assistant_tokens), self.generation_config.max_length - new_cur_len - 1)
min_new_tokens = max(min(max_new_tokens, self.main_model_min_length - new_cur_len), 0)
return min_new_tokens, max_new_tokens
def _update_past_and_masks(
self, input_ids: torch.LongTensor, remove_from_pkv: int = 0, num_added_tokens: int = 1
) -> bool:
"""Update past key values and attention masks for subsequent generation rounds."""
has_past_key_values = self.assistant_kwargs.get("past_key_values", None) is not None
if has_past_key_values:
new_cache_size = input_ids.shape[-1] - 1 - remove_from_pkv
self.assistant_kwargs["past_key_values"].crop(new_cache_size - num_added_tokens)
self.assistant_kwargs = _prepare_attention_mask(
self.assistant_kwargs, input_ids.shape[-1], self.assistant_model.config.is_encoder_decoder
)
self.assistant_kwargs = _prepare_token_type_ids(self.assistant_kwargs, input_ids.shape[-1])
return has_past_key_values
def _prepare_generation_args(self, input_ids: torch.LongTensor, min_new_tokens: int, max_new_tokens: int) -> dict:
"""Prepare arguments for the generation call."""
return {
self.input_ids_key: input_ids,
"min_new_tokens": min_new_tokens,
"max_new_tokens": max_new_tokens,
"generation_config": self.generation_config,
"logits_processor": self.logits_processor,
}
def _generate_candidates(self, generation_args: dict) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""Generate candidate sequences using the assistant model."""
assistant_output = self.assistant_model.generate(**generation_args, **self.assistant_kwargs)
self.assistant_kwargs["past_key_values"] = assistant_output.past_key_values
if (
is_sklearn_available()
and self.assistant_model.generation_config.assistant_confidence_threshold
and type(self) is AssistedCandidateGenerator
):
scores_tensor = torch.cat(assistant_output.scores, dim=0)
scores_softmax = torch.softmax(scores_tensor, dim=-1)
ids = assistant_output.sequences[-1, -len(assistant_output.scores) :]
p = scores_softmax[range(len(ids)), ids]
self.probs.extend(p.tolist())
candidate_logits = torch.stack(assistant_output.scores, dim=1)
candidate_ids = assistant_output.sequences
return candidate_ids, candidate_logits
class AssistedCandidateGeneratorDifferentTokenizers(AssistedCandidateGenerator):
"""
`CandidateGenerator` class to be used for Universal Assisted Generation (UAD): assisted generation with different tokenizers
for the assistant and main models. This class generates candidates through the use of a smaller
model.
The main model input tokens are re-encoded into assistant model tokens, then candidate tokens are generated in the assistant encoding, which are
in turn re-encoded into main model candidate tokens. Validation then proceeds as explained above.
The re-encoding steps involve decoding token ids into text and then encoding the text using a different tokenizer.
Since re-encoding the tokens may result in tokenization discrepancies, UAD finds the longest common subsequence between the source and target encodings,
to ensure the new tokens include the correct prompt suffix.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
assistant_model (`PreTrainedModel`):
The model to be used for generating candidates. This model should be smaller than the main model.
target_tokenizer (`PreTrainedTokenizerBase`):
The tokenizer used for the target model.
assistant_tokenizer (`PreTrainedTokenizerBase`):
The tokenizer used for the assistant model.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
model_kwargs (`Dict`):
The keyword arguments that will be passed to the main model, and are used as base inputs for the assistant
model as well.
inputs_tensor (`torch.Tensor`, *optional*):
The model input tensor. In encoder-decoder models, this is the encoder input.
"""
def __init__(
self,
input_ids: torch.LongTensor,
assistant_model: "PreTrainedModel",
target_tokenizer: "PreTrainedTokenizerBase",
assistant_tokenizer: "PreTrainedTokenizerBase",
generation_config: "GenerationConfig",
model_kwargs: dict,
inputs_tensor: Optional[torch.Tensor] = None,
logits_processor: "LogitsProcessorList" = None,
):
super().__init__(input_ids, assistant_model, generation_config, model_kwargs, inputs_tensor, logits_processor)
self.target_tokenizer = target_tokenizer
self.assistant_tokenizer = assistant_tokenizer
self.prev_target_ids_len: Optional[int] = None
self.prev_assistant_ids = None
self.target_lookbehind = assistant_model.generation_config.target_lookbehind
self.assistant_lookbehind = assistant_model.generation_config.assistant_lookbehind
@staticmethod
def _get_longest_diag_dict(input_matrix, nonzero_idx):
"""
Calculates the length of the longest diagonal sequence in a given matrix.
Args:
input_matrix (torch.Tensor): The input matrix.
nonzero_idx (torch.Tensor): The indices of the non-zero elements in the matrix.
Returns:
dict: A dictionary where the keys are the indices of the non-zero elements and the values are the lengths of the longest diagonal sequences starting from those indices.
"""
visited = set()
diags = {}
for idx in nonzero_idx:
start_idx = torch.clone(idx)
tuple_start_idx = tuple(start_idx.tolist())
if tuple_start_idx in visited:
continue
visited.add(tuple_start_idx)
cur_diag_len = 1
start_idx += 1
while start_idx[0] < input_matrix.shape[0] and start_idx[1] < input_matrix.shape[1]:
tuple_start_idx = tuple(start_idx.tolist())
visited.add(tuple_start_idx)
if input_matrix[start_idx[0], start_idx[1]] == 1:
cur_diag_len += 1
start_idx += 1
else:
break
diags[idx] = cur_diag_len
return diags
@staticmethod
def _get_longest_diag_index(input_matrix):
"""
Returns the start index and length of the longest diagonal in the given input.
Args:
input_matrix (numpy.ndarray): The input matrix.
Returns:
tuple: A tuple containing the start index and length of the longest diagonal.
"""
diags = AssistedCandidateGeneratorDifferentTokenizers._get_longest_diag_dict(
input_matrix, input_matrix.nonzero()
)
diags_values = list(diags.values())
diags_keys = list(diags.keys())
best_diag = np.argmax(diags_values)
diag_start_index = diags_keys[best_diag]
diag_start_length = diags_values[best_diag]
return diag_start_index, diag_start_length
@staticmethod
def _get_tokens_diag(prompt, prompt_plus_new_tokens):
"""
Input:
prompt: 2D array of shape (batch_size, prompt_length), represents the original prompt tokens
prompt_plus_new_tokens: 2D array of shape (batch_size, prompt_length), represents the suffix of the original prompt, with additional new tokens.
Output:
discrepancy_length: int, represents the number of tokens that need to be replaced from prompt
new_tokens_only: 2D array of shape (batch_size, new_token_length), represents the new tokens that are not in prompt
discrepancy_only: 2D array of shape (batch_size, discrepancy_length), represents the new tokens that are in prompt but not in prompt_plus_new_tokens
"""
compare_mat = prompt_plus_new_tokens.T == prompt
if not torch.is_tensor(compare_mat):
compare_mat = torch.tensor(compare_mat)
compare_mat_int = compare_mat.to(int)
if not compare_mat_int.any().item():
# empty intersection between prompt and prompt_plus_new_tokens
return None, None, None
longest_location, longest_diag_length = AssistedCandidateGeneratorDifferentTokenizers._get_longest_diag_index(
compare_mat_int
)
new_token_start_index = longest_location[0] + longest_diag_length
discrepancy_with_old = longest_location[1] + longest_diag_length
discrepancy_length = (prompt.shape[1] - discrepancy_with_old).item()
new_tokens_only = prompt_plus_new_tokens[:, new_token_start_index + discrepancy_length :]
discrepancy_only = prompt_plus_new_tokens[
:, new_token_start_index : new_token_start_index + discrepancy_length
]
return discrepancy_length, new_tokens_only, discrepancy_only
def convert_source_tokens_to_target_tokens(
self,
input_ids,
source_tokenizer,
destination_tokenizer,
):
"""
Convert token IDs from one tokenizer to another.
Args:
input_ids: The input token IDs.
source_tokenizer: The source tokenizer.
destination_tokenizer: The destination tokenizer.
Returns:
The converted token IDs.
"""
text = source_tokenizer.batch_decode(input_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
dest_ids = destination_tokenizer(text, add_special_tokens=True, return_tensors="pt")["input_ids"]
return dest_ids.to(input_ids.device)
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
Return:
`torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be
assessed by the model and a `torch.FloatTensor` of shape `(batch_size, candidate_length,
vocabulary_size)` containing the logits associated to each candidate.
"""
max_new_tokens = int(self.num_assistant_tokens)
if max_new_tokens == 0:
return input_ids, None
input_ids = input_ids.to(self.assistant_model.device)
remove_from_pkv = 0
assistant_input_ids, remove_from_pkv = self._prepare_assistant_input_ids(input_ids)
self.prev_assistant_ids = assistant_input_ids
min_new_tokens = max(min(max_new_tokens, self.main_model_min_length - assistant_input_ids.shape[-1]), 0)
self._update_past_and_masks(assistant_input_ids, remove_from_pkv)
generation_args = self._prepare_generation_args(assistant_input_ids, min_new_tokens, max_new_tokens)
self.assistant_kwargs.pop("attention_mask", None)
assistant_output = self.assistant_model.generate(**generation_args, **self.assistant_kwargs)
new_target_ids = self._process_assistant_outputs(input_ids, assistant_output.sequences, assistant_input_ids)
# Update state
self.prev_target_ids_len = input_ids.shape[1]
self.assistant_kwargs["past_key_values"] = assistant_output.past_key_values
self.prev_assistant_ids = assistant_output.sequences
if self.prev_target_ids_len >= new_target_ids.shape[1]:
return input_ids, None
return new_target_ids, None
def _prepare_assistant_input_ids(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, int]:
"""Converts target input IDs to assistant input IDs, handling discrepancies."""
convert_kwargs = {
"source_tokenizer": self.target_tokenizer,
"destination_tokenizer": self.assistant_tokenizer,
}
remove_from_pkv = 0
if self.prev_assistant_ids is not None and self.prev_target_ids_len > self.target_lookbehind:
# input_ids contains all target prompt input ids and some new target input ids
start_index_in_target_window = self.prev_target_ids_len - self.target_lookbehind
new_assistant_ids = self.convert_source_tokens_to_target_tokens(
input_ids[:, start_index_in_target_window:], **convert_kwargs
)
prompt_use_length = new_assistant_ids.shape[1]
prompt_use = self.prev_assistant_ids[:, -prompt_use_length:]
discrepancy_length, new_tokens_only, discrepancy_only = self._get_tokens_diag(
prompt_use, new_assistant_ids
)
assistant_input_ids = self.prev_assistant_ids
if new_tokens_only is not None:
if discrepancy_length > 0 and discrepancy_only.shape[1] > 0:
if discrepancy_length == discrepancy_only.shape[1]:
assistant_input_ids[:, -discrepancy_length:] = discrepancy_only
elif discrepancy_length > discrepancy_only.shape[1]:
discrepancy_length_diff = discrepancy_length - discrepancy_only.shape[1]
assistant_input_ids = assistant_input_ids[:, :-discrepancy_length_diff]
assistant_input_ids[:, -discrepancy_only.shape[1] :] = discrepancy_only
remove_from_pkv = discrepancy_length
if new_tokens_only.shape[1] > 0:
assistant_input_ids = torch.cat([assistant_input_ids, new_tokens_only], dim=-1)
else:
# edge case: in case of no intersection between prompt and new_assistant_ids
assistant_input_ids = torch.cat([assistant_input_ids, new_assistant_ids], dim=-1)
else:
assistant_input_ids = self.convert_source_tokens_to_target_tokens(input_ids, **convert_kwargs)
self.prev_target_ids_len = input_ids.shape[1]
return assistant_input_ids, remove_from_pkv
def _process_assistant_outputs(
self, input_ids: torch.LongTensor, assistant_sequences: torch.LongTensor, assistant_input_ids: torch.LongTensor
) -> torch.LongTensor:
"""Processes assistant outputs to obtain target input IDs."""
num_prev_assistant = self.prev_assistant_ids.shape[1]
start_assistant_look_index = num_prev_assistant - self.assistant_lookbehind
new_target_ids_from_window = self.convert_source_tokens_to_target_tokens(
assistant_sequences[:, start_assistant_look_index:],
source_tokenizer=self.assistant_tokenizer,
destination_tokenizer=self.target_tokenizer,
)
target_prompt_use_length = new_target_ids_from_window.shape[1]
target_prompt_use = input_ids[:, -target_prompt_use_length:]
_, target_new_tokens_only, _ = self._get_tokens_diag(target_prompt_use, new_target_ids_from_window)
new_target_ids = input_ids
if target_new_tokens_only is not None:
if target_new_tokens_only.shape[1] > 0:
new_target_ids = torch.cat([new_target_ids, target_new_tokens_only], dim=-1)
else:
# edge case: in case of no intersection between prompt and new_target_ids
new_target_ids = torch.cat([new_target_ids, new_target_ids_from_window], dim=-1)
if hasattr(self.generation_config, "max_length"):
new_target_ids = new_target_ids[:, : self.generation_config.max_length]
return new_target_ids
class _PruneReindexingLMHead(nn.Module):
"""
A class to prune and reindex the language model head.
This class prunes the language model head to only include the specified token IDs and reindexes the logits
to map back to the original vocabulary.
Args:
original_lm_head (nn.Module): The original language model head.
token_ids (list[int]): The list of token IDs to keep.
"""
def __init__(self, original_lm_head, assistant_overlap_token_ids):
super().__init__()
self.pruned_lm_head = prune_linear_layer(original_lm_head, assistant_overlap_token_ids).to(
original_lm_head.weight.dtype
)
def forward(self, hidden_states):
pruned_logits = self.pruned_lm_head(hidden_states)
return pruned_logits
class _MapInputEmbedding(nn.Module):
def __init__(self, original_embedding: nn.Embedding, assistant_overlap_token_ids):
"""
Wraps an existing embedding layer and remaps token IDs before lookup.
Args:
original_embedding (nn.Embedding): Pre-trained or existing embedding layer.
assistant_overlap_token_ids (dict): Mapping from original token IDs to new token IDs.
Example: {old_id: new_id}
"""
super().__init__()
self.original_embedding = original_embedding
self.weight = original_embedding.weight
self.assistant_overlap_token_ids = assistant_overlap_token_ids
self.map = False
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
"""
Args:
input_ids (torch.LongTensor): Tensor of token IDs (batch_size, seq_len).
Returns:
torch.FloatTensor: Corresponding input embeddings.
"""
if self.map:
# Get the last item from input_ids
my_input_ids = self.assistant_overlap_token_ids[input_ids[0, -1]].unsqueeze(0).unsqueeze(0)
else:
self.map = True
my_input_ids = input_ids
return self.original_embedding(my_input_ids)
class AssistantToTargetTranslator:
"""
Translates token ids and logits between assistant and target model vocabularies. This class is used to handle
vocabulary mismatches when using different tokenizers for the assistant and target models in speculative decoding,
as introduced in the paper "Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies"
(https://huggingface.co/papers/2502.05202).
It maintains mappings between the two vocabularies and handles token/logit conversion.
Args:
target_tokenizer (`PreTrainedTokenizerBase`):
The tokenizer used by the target (main) model.
assistant_tokenizer (`PreTrainedTokenizerBase`):
The tokenizer used by the assistant model.
target_vocab_size (`int`):
The size of the target model's vocabulary. If not provided, will be inferred from the target tokenizer.
assistant_model_device (str, optional): The device on which the assistant model is loaded.
Defaults to "cpu".
assistant_model_device (`str`, defaults to "cpu"): The device where the assistant model is located. Used for placing tensors.
assistant_model (Optional[PreTrainedModel], optional): The assistant model to be used. Defaults to None for backward compatibility.
assistant_prune_lm_head (bool): Whether to prune the assistant model's language model
head to match the target vocabulary. This is only applicable if `assistant_model` is provided.
Defaults to False for backward compatibility.
"""
FILTER_VALUE: float = -float("Inf") # The value used to filter out unmapped tokens in the logits.
SUPPRESS_TOKEN_ID: int = -1 # The ID used to mark suppressed tokens in the mapping.
@deprecate_kwarg("assistant_model_device", version="4.53")
def __init__(
self,
target_tokenizer: "PreTrainedTokenizerBase",
assistant_tokenizer: "PreTrainedTokenizerBase",
target_vocab_size: int, # required since target_vocab_size can be different from the length of target_tokenizer.get_vocab()
assistant_model_device: str = "cpu",
assistant_model: Optional["PreTrainedModel"] = None,
assistant_prune_lm_head: bool = False,
):
self._target_tokenizer: PreTrainedTokenizerBase = target_tokenizer
self._assistant_tokenizer: PreTrainedTokenizerBase = assistant_tokenizer
self._assistant_model_device: str = (
assistant_model_device if assistant_model is None else assistant_model.device
)
self.target_vocab_size: int = target_vocab_size
self._assistant_to_target_input_ids, self.target_to_assistant_input_ids = (
self._get_assistant_to_target_input_ids()
)
self._suppress_input_ids: list[int] = self._get_suppress_input_ids()
self.logits_processors: Optional[LogitsProcessorList] = None
self.assistant_prune_lm_head = assistant_prune_lm_head and assistant_model is not None
if len(self._suppress_input_ids) > 0:
# the assistant vocab is not a subset of the target vocab
if self.assistant_prune_lm_head:
self.assistant_overlap_token_ids = torch.tensor(
list(self.target_to_assistant_input_ids.values()),
dtype=torch.long,
device=self._assistant_model_device,
)
original_lm_head = assistant_model.get_output_embeddings()
pruned_lm_head = _PruneReindexingLMHead(original_lm_head, self.assistant_overlap_token_ids)
del original_lm_head
assistant_model.set_output_embeddings(pruned_lm_head)
original_input_embeddings = assistant_model.get_input_embeddings()
map_input_embeddings = _MapInputEmbedding(original_input_embeddings, self.assistant_overlap_token_ids)
del original_input_embeddings
assistant_model.set_input_embeddings(map_input_embeddings)
self.map_input_embeddings = map_input_embeddings
else:
self.logits_processors = LogitsProcessorList(
[SuppressTokensLogitsProcessor(self._get_suppress_input_ids(), self._assistant_model_device)]
)
def unmap_input_ids(self):
"""
Disables the mapping of input ids despite the assistant pruning for the language model head being enabled.
This method is required for the first forward pass of `_MapInputEmbedding` where input ids are already in the assistant vocabulary space. By disabling the mapping, it ensures that the input ids are processed correctly without remapping.
"""
if self.assistant_prune_lm_head:
self.map_input_embeddings.map = False
def _get_assistant_to_target_input_ids(self):
target_vocab = self._target_tokenizer.get_vocab()
assistant_vocab = self._assistant_tokenizer.get_vocab()
space_str = " "
target_space_ids = self._target_tokenizer(space_str, add_special_tokens=False)["input_ids"]
if len(target_space_ids) > 0:
target_space_sign = self._target_tokenizer.convert_ids_to_tokens(target_space_ids)[0][0]
assistant_space_ids = self._assistant_tokenizer(space_str, add_special_tokens=False)["input_ids"]
if len(assistant_space_ids) > 0:
assistant_space_sign = self._assistant_tokenizer.convert_ids_to_tokens(assistant_space_ids)[0][0]
if target_space_sign != assistant_space_sign:
# If the assistant tokenizer has a different space sign than the target tokenizer,
# we need to replace the assistant space sign with the target space sign in the assistant_vocab.
assistant_vocab = {
(
tok.replace(assistant_space_sign, target_space_sign, 1)
if tok.startswith(assistant_space_sign)
else tok
): idx
for tok, idx in assistant_vocab.items()
}
max_assistant_index = max(assistant_vocab.values())
assistant_to_target_input_ids = torch.full((max_assistant_index + 1,), self.SUPPRESS_TOKEN_ID, dtype=int)
target_to_assistant_input_ids: dict[int, int] = {}
for tok, assistant_id in assistant_vocab.items():
target_id = target_vocab.get(tok)
if target_id is not None:
assistant_to_target_input_ids[assistant_id] = target_id
target_to_assistant_input_ids[target_id] = assistant_id
return assistant_to_target_input_ids.to(self._assistant_model_device), target_to_assistant_input_ids
def _get_suppress_input_ids(self) -> list[int]:
"""
Get the input ids that are in the assistant vocab but not in the target vocab.
"""
return torch.where(self._assistant_to_target_input_ids == self.SUPPRESS_TOKEN_ID)[0]
def get_target_ids(
self, assistant_input_ids, target_input_ids, assistant_candidate_ids: torch.LongTensor
) -> torch.LongTensor:
"""
Return the target candidate ids that correspond to the assistant candidate ids.
Note that we have already the target ids for the prompt and we only need to find the target ids for the new tokens.
Moreover, assistant ids of the original prompt does not necessarily appear in _assistant_to_target_input_ids.
"""
num_new_tokens = len(assistant_candidate_ids[0]) - assistant_input_ids.shape[1]
if num_new_tokens == 0:
return target_input_ids
else:
# Get last `num_new_tokens` candidate IDs
last_candidate_ids = assistant_candidate_ids[0, -num_new_tokens:]
if self.assistant_prune_lm_head:
# Map assistant IDs -> target input IDs
last_candidate_ids = self.assistant_overlap_token_ids[last_candidate_ids]
transformed_slice = self._assistant_to_target_input_ids[last_candidate_ids]
return torch.cat((target_input_ids, transformed_slice.unsqueeze(0)), dim=1)
def get_target_logits(self, assistant_logits: torch.FloatTensor) -> torch.FloatTensor:
"""
Return the target logits that correspond to the assistant logits.
"""
target_shape: tuple[int, ...] = (*assistant_logits.shape[:-1], self.target_vocab_size)
target_logits: torch.FloatTensor = torch.full(
target_shape, self.FILTER_VALUE, device=self._assistant_model_device
)
# Mask for valid indices
assistant_indices_mask = self._assistant_to_target_input_ids != self.SUPPRESS_TOKEN_ID
# Exclude invalid indices
target_logits_supported_indices = self._assistant_to_target_input_ids[assistant_indices_mask]
if self.assistant_prune_lm_head:
target_logits[..., target_logits_supported_indices] = assistant_logits
else:
valid_assistant_logits = assistant_logits[..., : self._assistant_to_target_input_ids.shape[0]]
target_logits[..., target_logits_supported_indices] = valid_assistant_logits[..., assistant_indices_mask]
return target_logits
class AssistantVocabTranslatorCache:
"""
Cache for `AssistantToTargetTranslator` instances. The instances are computed at
pre-processing time, and this cache allows us to avoid recomputing them.
"""
_cache = weakref.WeakKeyDictionary()
@classmethod
@deprecate_kwarg("assistant_model_device", version="4.53")
def get_translator(
cls,
target_tokenizer: "PreTrainedTokenizerBase",
assistant_tokenizer: "PreTrainedTokenizerBase",
target_vocab_size: int,
assistant_model_device: str = "cpu",
assistant_model: Optional["PreTrainedModel"] = None,
assistant_prune_lm_head: bool = False,
) -> AssistantToTargetTranslator:
assistant_dict = cls._cache.get(target_tokenizer)
if assistant_dict is None:
assistant_dict = weakref.WeakKeyDictionary()
cls._cache[target_tokenizer] = assistant_dict
mapping = assistant_dict.get(assistant_tokenizer)
if mapping is None:
mapping = AssistantToTargetTranslator(
target_tokenizer,
assistant_tokenizer,
target_vocab_size,
assistant_model_device,
assistant_model,
assistant_prune_lm_head,
)
assistant_dict[assistant_tokenizer] = mapping
return mapping
@classmethod
def cleanup(cls):
"""
Clean up dead references in the cache.
This removes entries where either the target_tokenizer or assistant_tokenizer
has been garbage collected.
"""
# Remove entries from the outer cache where the target_tokenizer is no longer alive
dead_keys = [key for key in cls._cache if key is None]
for key in dead_keys:
del cls._cache[key]
# For each assistant_dict, remove entries where assistant_tokenizer is no longer alive
for assistant_dict in cls._cache.values():
dead_keys = [key for key in assistant_dict if key is None]
for key in dead_keys:
del assistant_dict[key]
class UniversalSpeculativeDecodingGenerator(AssistedCandidateGeneratorDifferentTokenizers):
"""
`CandidateGenerator` class to be used for Universal Speculative Decoding (USD): speculative decoding with different tokenizers
for the assistant and main models. This class generates candidates through the use of a smaller model.
"""
def __init__(
self,
input_ids: torch.LongTensor,
assistant_model: "PreTrainedModel",
target_tokenizer: "PreTrainedTokenizerBase",
assistant_tokenizer: "PreTrainedTokenizerBase",
generation_config: "GenerationConfig",
model_kwargs: dict,
atm_translator: AssistantToTargetTranslator,
inputs_tensor: Optional[torch.Tensor] = None,
logits_processor: "LogitsProcessorList" = None,
):
# Initialize translator before parent class
self._atm_translator = atm_translator
super().__init__(
input_ids,
assistant_model,
target_tokenizer,
assistant_tokenizer,
generation_config,
model_kwargs,
inputs_tensor,
logits_processor,
)
# Track sequence lengths and previous assistant IDs
self._target_seq_len_with_candidates: int = 0
self._prev_assistant_ids: Optional[torch.LongTensor] = None
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Simplified version of get_candidates that uses the translator cache for token conversion.
"""
target_input_ids = input_ids.to(self.assistant_model.device)
assistant_input_ids, num_added_tokens = self._prepare_assistant_input_ids(target_input_ids)
min_new_tokens, max_new_tokens = self._calculate_new_tokens(target_input_ids)
if max_new_tokens == 0:
return input_ids, None
self._update_past_and_masks(assistant_input_ids, num_added_tokens=num_added_tokens)
generation_args = self._prepare_generation_args(assistant_input_ids, min_new_tokens, max_new_tokens)
# Ensure scores are returned
generation_args["generation_config"].output_scores = True
generation_args["generation_config"].return_dict_in_generate = True
# Generate and process outputs using translator
if self._atm_translator.logits_processors is not None:
generation_args["logits_processor"] = self._atm_translator.logits_processors
self._prev_assistant_ids, assistant_candidate_logits = self._generate_candidates(generation_args)
# Use translator to convert tokens and logits
target_candidate_ids = self._atm_translator.get_target_ids(
assistant_input_ids, target_input_ids, self._prev_assistant_ids
)
self._target_seq_len_with_candidates = target_candidate_ids.shape[-1]
target_candidate_logits = self._atm_translator.get_target_logits(assistant_candidate_logits)
return target_candidate_ids, target_candidate_logits
def _update_past_and_masks(self, assistant_input_ids: torch.LongTensor, num_added_tokens: int = 1) -> bool:
if self._prev_assistant_ids is None:
# Prepare attention mask for the first generation.
# For subsequent generations, the attention mask is updated in super()_update_past_and_masks.
self.assistant_kwargs = _prepare_attention_mask(
self.assistant_kwargs, assistant_input_ids.shape[-1], self.assistant_model.config.is_encoder_decoder
)
return super()._update_past_and_masks(assistant_input_ids, num_added_tokens=num_added_tokens)
def _prepare_assistant_input_ids(self, target_input_ids: torch.LongTensor) -> torch.LongTensor:
"""
Simplified token conversion that only processes new tokens.
"""
# Calculate new tokens since last call
target_seq_len = target_input_ids.shape[-1]
if self._target_seq_len_with_candidates == 0:
new_token_count = target_seq_len
else:
new_token_count = 1
target_new_ids = target_input_ids[:, -new_token_count:]
# Convert the new tokens
assistant_new_ids = None
if self._target_seq_len_with_candidates > 0:
# we have only one new token and we can directly convert it
assistant_new_ids = self._atm_translator.target_to_assistant_input_ids.get(target_new_ids[0].item())
if assistant_new_ids is None:
target_new_text = self.target_tokenizer.batch_decode(
target_new_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
assistant_new_ids = self.assistant_tokenizer(
target_new_text, add_special_tokens=False, return_tensors="pt"
)["input_ids"].to(self.assistant_model.device)
else:
assistant_new_ids = torch.tensor([[assistant_new_ids]], device=self.assistant_model.device)
# Update or initialize assistant IDs
if self._prev_assistant_ids is None:
assistant_input_ids = assistant_new_ids
else:
tokens_to_remove = self._target_seq_len_with_candidates + 1 - target_seq_len
# If the number of new tokens is greater than zero, truncate the previous assistant IDs
if tokens_to_remove > 0:
self._prev_assistant_ids = self._prev_assistant_ids[:, :-tokens_to_remove]
assistant_input_ids = torch.cat([self._prev_assistant_ids, assistant_new_ids], dim=-1)
assistant_input_ids = assistant_input_ids.to(dtype=torch.long)
self._atm_translator.unmap_input_ids()
return assistant_input_ids, len(assistant_new_ids[0])
class PromptLookupCandidateGenerator(CandidateGenerator):
"""
`CandidateGenerator` class to be used for prompt lookup generation. This class generates candidates by looking up
likely continuations in the provided prompt (input_ids) itself.
Read the following blog post for more information: https://github.com/apoorvumang/prompt-lookup-decoding
Args:
max_matching_ngram_size (`int`):
The maximum ngram size to be considered for matching in the prompt
num_output_tokens (`int`):
The number of tokens to be output as candidate tokens.
max_length (`int`):
The number of total maximum tokens that can be generated. For decoder-only models that includes the prompt length.
Defaults to 20, which is the max length used as default in generation config.
"""
def __init__(
self,
eos_token_id: Optional[torch.Tensor] = None,
num_output_tokens: int = 10,
max_matching_ngram_size: Optional[int] = None,
max_length: int = 20,
):
self.num_output_tokens = num_output_tokens
self.max_matching_ngram_size = max_matching_ngram_size if max_matching_ngram_size else 2
self.max_length = max_length
self.eos_token_id = eos_token_id
if self.max_matching_ngram_size <= 0 or self.num_output_tokens <= 0:
raise ValueError("Invalid max_matching_ngram_size or num_output_tokens")
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
Return:
`torch.LongTensor` of shape `(num_candidates, candidate_length)`: The candidate sequences to be tried.
"""
input_length = input_ids.size(1)
# Don't generate more than `max_length - 1` candidates since the target model generates one extra token.
if self.max_length == input_length + 1:
return input_ids, None
chosen_ids = None
match_found = False
for ngram_size in range(min(self.max_matching_ngram_size, input_length - 1), 0, -1):
# Create sliding windows of size ngram_size
windows = input_ids.unfold(dimension=1, size=ngram_size, step=1)
# Convert ngram to a tensor for comparison
ngram_tensor = input_ids[0, -ngram_size:]
# Find where the windows match the ngram
matches = (windows == ngram_tensor).all(dim=2)
# Get the indices of matches
match_indices = matches.nonzero(as_tuple=True)[1]
# Iterate through match indices to find a valid continuation
for idx in match_indices:
start_idx = idx + ngram_size
end_idx = start_idx + self.num_output_tokens
end_idx = min(end_idx, input_length, self.max_length)
if start_idx < end_idx:
chosen_ids = input_ids[0, start_idx:end_idx]
match_found = True
# remove remaining candidate ids if an "eos" token is found, otherwise the target model may
# accept eos and the rest as valid, thus not stopping generation after "eos"
# NOTE: below code is written based on the fact that assisted decoding supports only bs=1
mask = isin_mps_friendly(chosen_ids, self.eos_token_id)
match_indices_eos = torch.nonzero(mask)
if match_indices_eos.numel() > 0:
first_eos_index = match_indices_eos[0].item()
chosen_ids = chosen_ids[:first_eos_index]
break
if match_found:
break
if chosen_ids is None or len(chosen_ids) == 0:
# In case we didn't find a match return the input sequence unchanged, reverts back to autoregressive decoding
return input_ids, None
# Now need extend input_ids with chosen_ids
chosen_ids = chosen_ids.unsqueeze(0)
candidate_input_ids = torch.cat((input_ids, chosen_ids), dim=1)
# assisted_generation expects logits as well, but we don't have those here, so returning None
return candidate_input_ids, None
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
"""
Updates the candidate generation strategy based on the outcomes.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
num_matches (`int`):
The number of matches between the candidate sequences and the model predictions.
"""
# Currently does nothing
return
class EarlyExitCandidateGenerator(AssistedCandidateGenerator):
"""
`CandidateGenerator` class to be used for assisted generation and speculative decoding. This class generates
candidates through the use of **the model itself**, exiting early. Can only be used with models that support early
exit, e.g., `facebook/layerskip-llama3.2-1B`.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
assistant_model (`PreTrainedModel`):
The original model. This model must support early exit (i.e. is trained to compute logits in earlier
layers).
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
model_kwargs (`Dict`):
The keyword arguments that will be passed to the main model, and are used as base inputs for the assistant
model as well.
inputs_tensor (`torch.Tensor`, *optional*):
The model input tensor. In encoder-decoder models, this is the encoder input.
"""
def __init__(
self,
input_ids: torch.LongTensor,
assistant_model: "PreTrainedModel",
generation_config: "GenerationConfig",
model_kwargs: dict,
inputs_tensor: Optional[torch.Tensor] = None,
logits_processor: "LogitsProcessorList" = None,
):
super().__init__(
input_ids=input_ids,
assistant_model=assistant_model,
generation_config=generation_config,
model_kwargs=model_kwargs,
inputs_tensor=inputs_tensor,
logits_processor=logits_processor,
)
# We have to move early exit out of the generation config, otherwise the assistant will also call `generate`
# with early exit
self.assistant_early_exit = self.generation_config.assistant_early_exit
self.generation_config.assistant_early_exit = None
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
# Temporarily sets the number of hidden layers to the early exit value
base_model = getattr(self.assistant_model, self.assistant_model.base_model_prefix)
original_num_hidden_layers = base_model.config.num_hidden_layers
base_model.config.num_hidden_layers = self.assistant_early_exit
candidate_ids, candidate_logits = super().get_candidates(input_ids)
base_model.config.num_hidden_layers = original_num_hidden_layers
return candidate_ids, candidate_logits
def _prepare_attention_mask(model_kwargs: dict[str, Any], new_length: int, is_encoder_decoder: bool) -> dict[str, Any]:
"""Expands or crops the model's mask for decoding purposes, to the defined length"""
mask_key = "decoder_attention_mask" if is_encoder_decoder else "attention_mask"
if mask_key not in model_kwargs:
return model_kwargs
mask = model_kwargs[mask_key]
mask_length_diff = new_length - mask.shape[1]
if mask_length_diff < 0:
model_kwargs[mask_key] = mask[:, :mask_length_diff]
elif mask_length_diff > 0:
model_kwargs[mask_key] = torch.cat([mask, mask.new_ones((mask.shape[0], mask_length_diff))], dim=-1)
# Handle cross attention models
if "cross_attention_mask" in model_kwargs:
# Mllama case
cross_mask = model_kwargs["cross_attention_mask"]
if mask_length_diff < 0:
model_kwargs["cross_attention_mask"] = cross_mask[:, :mask_length_diff]
elif mask_length_diff > 0:
new_mask = cross_mask[:, -1:, :, :].repeat(1, mask_length_diff, 1, 1)
model_kwargs["cross_attention_mask"] = torch.cat([cross_mask, new_mask], dim=1)
elif "image_attention_mask" in model_kwargs:
# IDEFICS case
cross_mask = model_kwargs["image_attention_mask"]
if mask_length_diff < 0:
model_kwargs["image_attention_mask"] = cross_mask[:, :mask_length_diff]
elif mask_length_diff > 0:
new_mask = cross_mask[:, -1:, :].repeat(1, mask_length_diff, 1)
model_kwargs["image_attention_mask"] = torch.cat([cross_mask, new_mask], dim=1)
return model_kwargs
def _prepare_token_type_ids(model_kwargs: dict[str, Any], new_length: int) -> dict[str, Any]:
"""Expands or crops the model's token_type_ids for decoding purposes, to the defined length"""
if "token_type_ids" not in model_kwargs or model_kwargs["token_type_ids"] is None:
return model_kwargs
token_type_ids = model_kwargs["token_type_ids"]
final_token_type = token_type_ids[:, -1].unsqueeze(-1)
type_length_diff = new_length - token_type_ids.shape[1]
if type_length_diff < 0:
token_type_ids = token_type_ids[:, :type_length_diff]
elif type_length_diff > 0:
token_type_copies = final_token_type.repeat(1, type_length_diff)
model_kwargs["token_type_ids"] = torch.cat([model_kwargs["token_type_ids"], token_type_copies], dim=-1)
return model_kwargs