673 lines
29 KiB
Python
673 lines
29 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch CodeGen model."""
|
|
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
|
|
from ...activations import ACT2FN
|
|
from ...cache_utils import Cache, DynamicCache
|
|
from ...generation import GenerationMixin
|
|
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
from ...modeling_utils import PreTrainedModel
|
|
from ...utils import (
|
|
auto_docstring,
|
|
is_torch_flex_attn_available,
|
|
logging,
|
|
)
|
|
from .configuration_codegen import CodeGenConfig
|
|
|
|
|
|
if is_torch_flex_attn_available():
|
|
from torch.nn.attention.flex_attention import BlockMask
|
|
|
|
from ...integrations.flex_attention import make_flex_block_causal_mask
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
# Copied from transformers.models.gptj.modeling_gptj.create_sinusoidal_positions
|
|
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
|
|
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float()
|
|
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
|
|
|
|
|
# Copied from transformers.models.gptj.modeling_gptj.rotate_every_two
|
|
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
|
|
x1 = x[:, :, :, ::2]
|
|
x2 = x[:, :, :, 1::2]
|
|
x = torch.stack((-x2, x1), dim=-1)
|
|
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
|
|
|
|
|
# Copied from transformers.models.gptj.modeling_gptj.apply_rotary_pos_emb
|
|
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
|
|
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
|
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
|
return (tensor * cos) + (rotate_every_two(tensor) * sin)
|
|
|
|
|
|
class CodeGenAttention(nn.Module):
|
|
def __init__(self, config, layer_idx=None):
|
|
super().__init__()
|
|
|
|
max_positions = config.max_position_embeddings
|
|
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
|
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
|
self.layer_idx = layer_idx
|
|
if layer_idx is None:
|
|
logger.warning_once(
|
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
|
"when creating this class."
|
|
)
|
|
|
|
self.embed_dim = config.hidden_size
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_attention_heads
|
|
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
|
f" `num_attention_heads`: {self.num_attention_heads})."
|
|
)
|
|
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
|
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
|
|
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
|
self.rotary_dim = config.rotary_dim
|
|
pos_embd_dim = self.rotary_dim or self.embed_dim
|
|
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
|
|
|
def _split_heads(self, x, n_head, dim_head, mp_num):
|
|
reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head))
|
|
reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:])
|
|
return reshaped
|
|
|
|
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
|
"""
|
|
Merges attn_head_size dim and num_attn_heads dim into n_ctx
|
|
"""
|
|
if len(tensor.shape) == 5:
|
|
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
|
elif len(tensor.shape) == 4:
|
|
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
|
else:
|
|
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
|
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
|
return tensor.view(new_shape)
|
|
|
|
def _attn(
|
|
self,
|
|
query,
|
|
key,
|
|
value,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
):
|
|
# Keep the attention weights computation in fp32 to avoid overflow issues
|
|
query = query.to(torch.float32)
|
|
key = key.to(torch.float32)
|
|
|
|
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
|
|
|
if attention_mask is not None:
|
|
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
|
attn_weights += causal_mask
|
|
|
|
attn_weights = attn_weights / self.scale_attn
|
|
attn_weights = nn.Softmax(dim=-1)(attn_weights)
|
|
attn_weights = attn_weights.to(value.dtype)
|
|
attn_weights = self.attn_dropout(attn_weights)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
attn_weights = attn_weights * head_mask
|
|
|
|
attn_output = torch.matmul(attn_weights, value)
|
|
|
|
return attn_output, attn_weights
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Optional[torch.FloatTensor],
|
|
layer_past: Optional[Cache] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = False,
|
|
output_attentions: Optional[bool] = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[
|
|
tuple[torch.Tensor, tuple[torch.Tensor]],
|
|
Optional[tuple[torch.Tensor, tuple[torch.Tensor], tuple[torch.Tensor, ...]]],
|
|
]:
|
|
qkv = self.qkv_proj(hidden_states)
|
|
# TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic
|
|
mp_num = 4
|
|
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
|
|
|
|
local_dim = self.head_dim * self.num_attention_heads // mp_num
|
|
query, value, key = torch.split(qkv_split, local_dim, dim=-1)
|
|
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
|
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
|
|
|
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
|
value = value.permute(0, 2, 1, 3)
|
|
|
|
embed_positions = self.embed_positions
|
|
if embed_positions.device != position_ids.device:
|
|
embed_positions = embed_positions.to(position_ids.device)
|
|
self.embed_positions = embed_positions
|
|
|
|
sincos = embed_positions[position_ids]
|
|
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
|
|
|
if self.rotary_dim is not None:
|
|
k_rot = key[:, :, :, : self.rotary_dim]
|
|
k_pass = key[:, :, :, self.rotary_dim :]
|
|
|
|
q_rot = query[:, :, :, : self.rotary_dim]
|
|
q_pass = query[:, :, :, self.rotary_dim :]
|
|
|
|
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
|
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
|
|
|
key = torch.cat([k_rot, k_pass], dim=-1)
|
|
query = torch.cat([q_rot, q_pass], dim=-1)
|
|
else:
|
|
key = apply_rotary_pos_emb(key, sin, cos)
|
|
query = apply_rotary_pos_emb(query, sin, cos)
|
|
|
|
key = key.permute(0, 2, 1, 3)
|
|
query = query.permute(0, 2, 1, 3)
|
|
|
|
# Note that this cast is quite ugly, but is not implemented before ROPE as k_rot in the original codebase is always in fp32.
|
|
# Reference: https://github.com/salesforce/CodeGen/blob/f210c3bb1216c975ad858cd4132c0fdeabf4bfc2/codegen1/jaxformer/hf/codegen/modeling_codegen.py#L38
|
|
if layer_past is not None:
|
|
cache_kwargs = {
|
|
"sin": sin,
|
|
"cos": cos,
|
|
"partial_rotation_size": self.rotary_dim,
|
|
"cache_position": cache_position,
|
|
}
|
|
key, value = layer_past.update(key.to(hidden_states.dtype), value, self.layer_idx, cache_kwargs)
|
|
|
|
# compute self-attention: V x Softmax(QK^T)
|
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
|
|
|
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
|
attn_output = self.out_proj(attn_output)
|
|
attn_output = self.resid_dropout(attn_output)
|
|
return attn_output, attn_weights
|
|
|
|
|
|
# Copied from transformers.models.gptj.modeling_gptj.GPTJMLP with GPTJ->CodeGen
|
|
class CodeGenMLP(nn.Module):
|
|
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
|
super().__init__()
|
|
embed_dim = config.n_embd
|
|
|
|
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
|
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
|
|
|
self.act = ACT2FN[config.activation_function]
|
|
self.dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
|
hidden_states = self.fc_in(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.fc_out(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.gptj.modeling_gptj.GPTJBlock with GPTJ->CodeGen
|
|
class CodeGenBlock(GradientCheckpointingLayer):
|
|
# Ignore copy
|
|
def __init__(self, config, layer_idx=None):
|
|
super().__init__()
|
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
|
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
|
self.attn = CodeGenAttention(config, layer_idx)
|
|
self.mlp = CodeGenMLP(inner_dim, config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: Optional[torch.FloatTensor],
|
|
layer_past: Optional[Cache] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = False,
|
|
output_attentions: Optional[bool] = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[tuple[torch.Tensor], Optional[tuple[torch.Tensor, tuple[torch.FloatTensor, ...]]]]:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
attn_outputs, attn_weights = self.attn(
|
|
hidden_states=hidden_states,
|
|
layer_past=layer_past,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
cache_position=cache_position,
|
|
)
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
|
|
|
return hidden_states, attn_weights
|
|
|
|
|
|
@auto_docstring
|
|
class CodeGenPreTrainedModel(PreTrainedModel):
|
|
config: CodeGenConfig
|
|
base_model_prefix = "transformer"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["CodeGenBlock"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
|
|
_can_compile_fullgraph = True
|
|
|
|
def __init__(self, *inputs, **kwargs):
|
|
super().__init__(*inputs, **kwargs)
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights."""
|
|
if isinstance(module, (nn.Linear,)):
|
|
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
elif isinstance(module, nn.LayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
|
|
|
|
@auto_docstring
|
|
class CodeGenModel(CodeGenPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.embed_dim = config.n_embd
|
|
self.vocab_size = config.vocab_size
|
|
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
|
self.drop = nn.Dropout(config.embd_pdrop)
|
|
self.h = nn.ModuleList([CodeGenBlock(config, layer_idx=i) for i in range(config.n_layer)])
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.wte
|
|
|
|
def set_input_embeddings(self, new_embeddings):
|
|
self.wte = new_embeddings
|
|
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, tuple[tuple[torch.Tensor]]]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs, # NOOP kwargs, for now
|
|
) -> Union[tuple, BaseModelOutputWithPast]:
|
|
r"""
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_dim)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.wte(input_ids)
|
|
|
|
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
|
if not isinstance(past_key_values, (type(None), Cache)):
|
|
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
|
|
|
if use_cache and past_key_values is None:
|
|
past_key_values = DynamicCache()
|
|
|
|
seq_length = inputs_embeds.shape[1]
|
|
if cache_position is None:
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
|
|
|
|
if position_ids is None:
|
|
position_ids = cache_position.unsqueeze(0)
|
|
|
|
causal_mask = self._update_causal_mask(
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
|
)
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x num_attention_heads x N x N
|
|
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
|
hidden_states = inputs_embeds
|
|
|
|
if token_type_ids is not None:
|
|
token_type_ids = token_type_ids.view(-1, seq_length)
|
|
token_type_embeds = self.wte(token_type_ids)
|
|
hidden_states = hidden_states + token_type_embeds
|
|
|
|
hidden_states = self.drop(hidden_states)
|
|
output_shape = (-1, seq_length, hidden_states.size(-1))
|
|
|
|
all_self_attentions = () if output_attentions else None
|
|
all_hidden_states = () if output_hidden_states else None
|
|
for i, block in enumerate(self.h):
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
outputs = block(
|
|
hidden_states,
|
|
layer_past=past_key_values,
|
|
attention_mask=causal_mask,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask[i],
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (outputs[1],)
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(output_shape)
|
|
# Add last hidden state
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attentions] if v is not None
|
|
)
|
|
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=past_key_values,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|
|
|
|
# Copied from transformers.models.gptj.modeling_gptj.GPTJModel._update_causal_mask
|
|
def _update_causal_mask(
|
|
self,
|
|
attention_mask: Union[torch.Tensor, "BlockMask"],
|
|
input_tensor: torch.Tensor,
|
|
cache_position: torch.Tensor,
|
|
past_key_values: Cache,
|
|
output_attentions: bool = False,
|
|
):
|
|
if self.config._attn_implementation == "flash_attention_2":
|
|
if attention_mask is not None and (attention_mask == 0.0).any():
|
|
return attention_mask
|
|
return None
|
|
if self.config._attn_implementation == "flex_attention":
|
|
if isinstance(attention_mask, torch.Tensor):
|
|
attention_mask = make_flex_block_causal_mask(attention_mask)
|
|
return attention_mask
|
|
|
|
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
|
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
|
# to infer the attention mask.
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
|
|
|
|
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
|
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
|
|
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
|
attention_mask,
|
|
inputs_embeds=input_tensor,
|
|
past_key_values_length=past_seen_tokens,
|
|
is_training=self.training,
|
|
):
|
|
return None
|
|
|
|
dtype = input_tensor.dtype
|
|
sequence_length = input_tensor.shape[1]
|
|
if using_compilable_cache:
|
|
target_length = past_key_values.get_max_cache_shape()
|
|
else:
|
|
target_length = (
|
|
attention_mask.shape[-1]
|
|
if isinstance(attention_mask, torch.Tensor)
|
|
else past_seen_tokens + sequence_length + 1
|
|
)
|
|
|
|
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask,
|
|
sequence_length=sequence_length,
|
|
target_length=target_length,
|
|
dtype=dtype,
|
|
cache_position=cache_position,
|
|
batch_size=input_tensor.shape[0],
|
|
)
|
|
|
|
if (
|
|
self.config._attn_implementation == "sdpa"
|
|
and attention_mask is not None
|
|
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
|
and not output_attentions
|
|
):
|
|
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
|
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
|
# Details: https://github.com/pytorch/pytorch/issues/110213
|
|
min_dtype = torch.finfo(dtype).min
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
|
|
|
return causal_mask
|
|
|
|
@staticmethod
|
|
# Copied from transformers.models.gptj.modeling_gptj.GPTJModel._prepare_4d_causal_attention_mask_with_cache_position
|
|
def _prepare_4d_causal_attention_mask_with_cache_position(
|
|
attention_mask: torch.Tensor,
|
|
sequence_length: int,
|
|
target_length: int,
|
|
dtype: torch.dtype,
|
|
cache_position: torch.Tensor,
|
|
batch_size: int,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
|
|
|
Args:
|
|
attention_mask (`torch.Tensor`):
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
|
`(batch_size, 1, query_length, key_value_length)`.
|
|
sequence_length (`int`):
|
|
The sequence length being processed.
|
|
target_length (`int`):
|
|
The target length: when generating with static cache, the mask should be as long as the static cache,
|
|
to account for the 0 padding, the part of the cache that is not filled yet.
|
|
dtype (`torch.dtype`):
|
|
The dtype to use for the 4D attention mask.
|
|
cache_position (`torch.Tensor`):
|
|
Indices depicting the position of the input sequence tokens in the sequence.
|
|
batch_size (`torch.Tensor`):
|
|
Batch size.
|
|
"""
|
|
if attention_mask is not None and attention_mask.dim() == 4:
|
|
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
|
causal_mask = attention_mask
|
|
else:
|
|
min_dtype = torch.finfo(dtype).min
|
|
causal_mask = torch.full(
|
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
|
)
|
|
if sequence_length != 1:
|
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
|
if attention_mask is not None:
|
|
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
|
mask_length = attention_mask.shape[-1]
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
|
causal_mask.device
|
|
)
|
|
padding_mask = padding_mask == 0
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
|
padding_mask, min_dtype
|
|
)
|
|
|
|
return causal_mask
|
|
|
|
|
|
@auto_docstring(
|
|
custom_intro="""
|
|
The CodeGen Model transformer with a language modeling head on top.
|
|
"""
|
|
)
|
|
class CodeGenForCausalLM(CodeGenPreTrainedModel, GenerationMixin):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.transformer = CodeGenModel(config)
|
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, tuple[tuple[torch.Tensor]]]] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs,
|
|
) -> Union[tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_dim)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.transformer(
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
cache_position=cache_position,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
|
|
# make sure sampling in fp16 works correctly and
|
|
# compute loss in fp32 to match with mesh-tf version
|
|
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
|
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# move labels to correct device to enable model parallelism
|
|
labels = labels.to(lm_logits.device)
|
|
# Flatten the tokens
|
|
loss = self.loss_function(
|
|
lm_logits,
|
|
labels,
|
|
vocab_size=self.config.vocab_size,
|
|
**kwargs,
|
|
)
|
|
|
|
loss = loss.to(hidden_states.dtype)
|
|
|
|
if not return_dict:
|
|
output = (lm_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=lm_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
|
|
__all__ = ["CodeGenForCausalLM", "CodeGenModel", "CodeGenPreTrainedModel"]
|