team-10/venv/Lib/site-packages/transformers/models/diffllama/modeling_diffllama.py
2025-08-02 02:00:33 +02:00

766 lines
34 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/diffllama/modular_diffllama.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_diffllama.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 weak-kajuma and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on Llama implementations in this library and Microsoft's
# Differential Transformer implementations.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Union
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...integrations import use_kernel_forward_from_hub
from ...masking_utils import create_causal_mask
from ...modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask
from ...modeling_layers import (
GenericForQuestionAnswering,
GenericForSequenceClassification,
GenericForTokenClassification,
GradientCheckpointingLayer,
)
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...processing_utils import Unpack
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
from ...utils.generic import check_model_inputs
from .configuration_diffllama import DiffLlamaConfig
logger = logging.get_logger(__name__)
class DiffLlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def lambda_init_fn(layer_idx):
return 0.8 - 0.6 * math.exp(-0.3 * layer_idx)
class DiffLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DiffLlamaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# under this are not used
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.lambda_init = lambda_init_fn(layer_idx)
self.lambda_q1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_q2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.groupnorm = nn.RMSNorm(2 * self.head_dim, eps=config.rms_norm_eps, elementwise_affine=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
bsz, target_len, _ = hidden_states.size()
q_len = target_len
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = torch.matmul(attn_weights, value_states)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class DiffLlamaFlashAttention2(DiffLlamaAttention):
"""
DiffLlama flash attention module. This module inherits from `DiffLlamaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (DiffLlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
device_type = query_states.device.type if query_states.device.type != "mps" else "cpu"
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = (
torch.get_autocast_dtype(device_type)
if hasattr(torch, "get_autocast_dtype")
else torch.get_autocast_gpu_dtype()
)
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
value_states1, value_states2 = torch.chunk(value_states, 2, dim=2)
value_states1 = value_states1.repeat(1, 1, 2, 1)
value_states2 = value_states2.repeat(1, 1, 2, 1)
attn_output1 = _flash_attention_forward(
query_states,
key_states,
value_states1,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output2 = _flash_attention_forward(
query_states,
key_states,
value_states2,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = torch.cat([attn_output1, attn_output2], dim=-1)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=2)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, None
class DiffLlamaSdpaAttention(DiffLlamaAttention):
"""
DiffLlama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`DiffLlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from DiffLlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None
@use_kernel_forward_from_hub("RMSNorm")
class DiffLlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DiffLlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
DIFFLLAMA_ATTENTION_CLASSES = {
"eager": DiffLlamaAttention,
"flash_attention_2": DiffLlamaFlashAttention2,
"sdpa": DiffLlamaSdpaAttention,
}
class DiffLlamaDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: DiffLlamaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = DIFFLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = DiffLlamaMLP(config)
self.input_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
@auto_docstring
class DiffLlamaPreTrainedModel(PreTrainedModel):
config: DiffLlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DiffLlamaDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = False
_can_compile_fullgraph = True
_supports_attention_backend = False
_can_record_outputs = {
"hidden_states": DiffLlamaDecoderLayer,
"attentions": DiffLlamaAttention,
}
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, DiffLlamaAttention):
module.lambda_q1.data.normal_(0, self.config.lambda_std_dev)
module.lambda_k1.data.normal_(0, self.config.lambda_std_dev)
module.lambda_q2.data.normal_(0, self.config.lambda_std_dev)
module.lambda_k2.data.normal_(0, self.config.lambda_std_dev)
class DiffLlamaRotaryEmbedding(nn.Module):
def __init__(self, config: DiffLlamaConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
@auto_docstring
class DiffLlamaModel(DiffLlamaPreTrainedModel):
def __init__(self, config: DiffLlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[DiffLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DiffLlamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@check_model_inputs
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position: torch.Tensor = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,
)
hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
)
@auto_docstring
class DiffLlamaForCausalLM(DiffLlamaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = DiffLlamaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> CausalLMOutputWithPast:
r"""
Example:
```python
>>> from transformers import AutoTokenizer, DiffLlamaForCausalLM
>>> model = DiffLlamaForCausalLM.from_pretrained("google/diffllama-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/diffllama-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class DiffLlamaForSequenceClassification(GenericForSequenceClassification, DiffLlamaPreTrainedModel):
pass
class DiffLlamaForQuestionAnswering(GenericForQuestionAnswering, DiffLlamaPreTrainedModel):
base_model_prefix = "transformer" # For BC, where `transformer` was used instead of `model`
class DiffLlamaForTokenClassification(GenericForTokenClassification, DiffLlamaPreTrainedModel):
pass
__all__ = [
"DiffLlamaPreTrainedModel",
"DiffLlamaModel",
"DiffLlamaForCausalLM",
"DiffLlamaForSequenceClassification",
"DiffLlamaForQuestionAnswering",
"DiffLlamaForTokenClassification",
]