1180 lines
49 KiB
Python
1180 lines
49 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch LayoutLM model."""
|
|
|
|
from typing import Callable, Optional, Union
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from ...activations import ACT2FN
|
|
from ...modeling_layers import GradientCheckpointingLayer
|
|
from ...modeling_outputs import (
|
|
BaseModelOutput,
|
|
BaseModelOutputWithPooling,
|
|
MaskedLMOutput,
|
|
QuestionAnsweringModelOutput,
|
|
SequenceClassifierOutput,
|
|
TokenClassifierOutput,
|
|
)
|
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
|
from ...utils import auto_docstring, can_return_tuple, logging
|
|
from ...utils.deprecation import deprecate_kwarg
|
|
from .configuration_layoutlm import LayoutLMConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
LayoutLMLayerNorm = nn.LayerNorm
|
|
|
|
|
|
class LayoutLMEmbeddings(nn.Module):
|
|
"""Construct the embeddings from word, position and token_type embeddings."""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
|
self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
|
|
self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
|
|
self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
|
|
self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size)
|
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
|
|
|
self.LayerNorm = LayoutLMLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
self.register_buffer(
|
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids=None,
|
|
bbox=None,
|
|
token_type_ids=None,
|
|
position_ids=None,
|
|
inputs_embeds=None,
|
|
):
|
|
if input_ids is not None:
|
|
input_shape = input_ids.size()
|
|
else:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
|
|
seq_length = input_shape[1]
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if position_ids is None:
|
|
position_ids = self.position_ids[:, :seq_length]
|
|
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.word_embeddings(input_ids)
|
|
|
|
words_embeddings = inputs_embeds
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
try:
|
|
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
|
|
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
|
|
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
|
|
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
|
|
except IndexError as e:
|
|
raise IndexError("The `bbox`coordinate values should be within 0-1000 range.") from e
|
|
|
|
h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
|
|
w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
|
|
embeddings = (
|
|
words_embeddings
|
|
+ position_embeddings
|
|
+ left_position_embeddings
|
|
+ upper_position_embeddings
|
|
+ right_position_embeddings
|
|
+ lower_position_embeddings
|
|
+ h_position_embeddings
|
|
+ w_position_embeddings
|
|
+ token_type_embeddings
|
|
)
|
|
embeddings = self.LayerNorm(embeddings)
|
|
embeddings = self.dropout(embeddings)
|
|
return embeddings
|
|
|
|
|
|
# Copied from transformers.models.align.modeling_align.eager_attention_forward
|
|
def eager_attention_forward(
|
|
module: nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor],
|
|
scaling: float,
|
|
dropout: float = 0.0,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
):
|
|
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
|
|
if attention_mask is not None:
|
|
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
|
attn_weights = attn_weights + causal_mask
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
|
|
if head_mask is not None:
|
|
attn_weights = attn_weights * head_mask.view(1, -1, 1, 1)
|
|
|
|
attn_output = torch.matmul(attn_weights, value)
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
return attn_output, attn_weights
|
|
|
|
|
|
# Copied from transformers.models.align.modeling_align.AlignTextSelfAttention with AlignText->LayoutLM
|
|
class LayoutLMSelfAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
|
raise ValueError(
|
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
|
f"heads ({config.num_attention_heads})"
|
|
)
|
|
|
|
self.config = config
|
|
self.num_attention_heads = config.num_attention_heads
|
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
|
self.attention_dropout = config.attention_probs_dropout_prob
|
|
self.scaling = self.attention_head_size**-0.5
|
|
|
|
@deprecate_kwarg("encoder_hidden_states", version="4.54.0")
|
|
@deprecate_kwarg("encoder_attention_mask", version="4.54.0")
|
|
@deprecate_kwarg("past_key_value", version="4.54.0")
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
**kwargs,
|
|
) -> tuple[torch.Tensor]:
|
|
input_shape = hidden_states.shape[:-1]
|
|
hidden_shape = (*input_shape, -1, self.attention_head_size)
|
|
|
|
query_states = self.query(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
key_states = self.key(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
value_states = self.value(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
|
|
attention_interface: Callable = eager_attention_forward
|
|
if self.config._attn_implementation != "eager":
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
|
|
attn_output, attn_weights = attention_interface(
|
|
self,
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
dropout=0.0 if not self.training else self.attention_dropout,
|
|
scaling=self.scaling,
|
|
head_mask=head_mask,
|
|
**kwargs,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
|
return outputs
|
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->LayoutLM
|
|
class LayoutLMSelfOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.align.modeling_align.AlignTextAttention with AlignText->LayoutLM
|
|
class LayoutLMAttention(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.self = LayoutLMSelfAttention(config)
|
|
self.output = LayoutLMSelfOutput(config)
|
|
self.pruned_heads = set()
|
|
|
|
def prune_heads(self, heads):
|
|
if len(heads) == 0:
|
|
return
|
|
heads, index = find_pruneable_heads_and_indices(
|
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
|
)
|
|
|
|
# Prune linear layers
|
|
self.self.query = prune_linear_layer(self.self.query, index)
|
|
self.self.key = prune_linear_layer(self.self.key, index)
|
|
self.self.value = prune_linear_layer(self.self.value, index)
|
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
|
|
|
# Update hyper params and store pruned heads
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
|
self.pruned_heads = self.pruned_heads.union(heads)
|
|
|
|
@deprecate_kwarg("encoder_hidden_states", version="4.54.0")
|
|
@deprecate_kwarg("encoder_attention_mask", version="4.54.0")
|
|
@deprecate_kwarg("past_key_value", version="4.54.0")
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
**kwargs,
|
|
) -> tuple[torch.Tensor]:
|
|
self_outputs = self.self(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
**kwargs,
|
|
)
|
|
attention_output = self.output(self_outputs[0], hidden_states)
|
|
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
|
return outputs
|
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
|
class LayoutLMIntermediate(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
if isinstance(config.hidden_act, str):
|
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.intermediate_act_fn = config.hidden_act
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM
|
|
class LayoutLMOutput(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.align.modeling_align.AlignTextLayer with AlignText->LayoutLM
|
|
class LayoutLMLayer(GradientCheckpointingLayer):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
|
self.seq_len_dim = 1
|
|
self.attention = LayoutLMAttention(config)
|
|
self.intermediate = LayoutLMIntermediate(config)
|
|
self.output = LayoutLMOutput(config)
|
|
|
|
@deprecate_kwarg("encoder_hidden_states", version="4.54.0")
|
|
@deprecate_kwarg("encoder_attention_mask", version="4.54.0")
|
|
@deprecate_kwarg("past_key_value", version="4.54.0")
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
**kwargs,
|
|
) -> tuple[torch.Tensor]:
|
|
self_attention_outputs = self.attention(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
**kwargs,
|
|
)
|
|
attention_output = self_attention_outputs[0]
|
|
|
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
|
layer_output = apply_chunking_to_forward(
|
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
|
)
|
|
outputs = (layer_output,) + outputs
|
|
|
|
return outputs
|
|
|
|
def feed_forward_chunk(self, attention_output):
|
|
intermediate_output = self.intermediate(attention_output)
|
|
layer_output = self.output(intermediate_output, attention_output)
|
|
return layer_output
|
|
|
|
|
|
# Copied from transformers.models.align.modeling_align.AlignTextEncoder with AlignText->LayoutLM
|
|
class LayoutLMEncoder(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer = nn.ModuleList([LayoutLMLayer(config) for i in range(config.num_hidden_layers)])
|
|
self.gradient_checkpointing = False
|
|
|
|
@deprecate_kwarg("encoder_hidden_states", version="4.54.0")
|
|
@deprecate_kwarg("encoder_attention_mask", version="4.54.0")
|
|
@deprecate_kwarg("past_key_values", version="4.54.0")
|
|
@deprecate_kwarg("use_cache", version="4.54.0")
|
|
@can_return_tuple
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
output_hidden_states: Optional[bool] = False,
|
|
return_dict: Optional[bool] = True,
|
|
**kwargs,
|
|
) -> Union[tuple[torch.Tensor], BaseModelOutput]:
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
for i, layer_module in enumerate(self.layer):
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
|
|
|
layer_outputs = layer_module(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
head_mask=layer_head_mask,
|
|
output_attentions=output_attentions,
|
|
**kwargs,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
|
class LayoutLMPooler(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
self.activation = nn.Tanh()
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
# We "pool" the model by simply taking the hidden state corresponding
|
|
# to the first token.
|
|
first_token_tensor = hidden_states[:, 0]
|
|
pooled_output = self.dense(first_token_tensor)
|
|
pooled_output = self.activation(pooled_output)
|
|
return pooled_output
|
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->LayoutLM
|
|
class LayoutLMPredictionHeadTransform(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
|
if isinstance(config.hidden_act, str):
|
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.transform_act_fn = config.hidden_act
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.transform_act_fn(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->LayoutLM
|
|
class LayoutLMLMPredictionHead(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.transform = LayoutLMPredictionHeadTransform(config)
|
|
|
|
# The output weights are the same as the input embeddings, but there is
|
|
# an output-only bias for each token.
|
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
|
|
|
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
|
self.decoder.bias = self.bias
|
|
|
|
def _tie_weights(self):
|
|
self.decoder.bias = self.bias
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.transform(hidden_states)
|
|
hidden_states = self.decoder(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->LayoutLM
|
|
class LayoutLMOnlyMLMHead(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.predictions = LayoutLMLMPredictionHead(config)
|
|
|
|
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
|
prediction_scores = self.predictions(sequence_output)
|
|
return prediction_scores
|
|
|
|
|
|
@auto_docstring
|
|
class LayoutLMPreTrainedModel(PreTrainedModel):
|
|
config: LayoutLMConfig
|
|
base_model_prefix = "layoutlm"
|
|
supports_gradient_checkpointing = True
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights"""
|
|
if isinstance(module, nn.Linear):
|
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
elif isinstance(module, LayoutLMLayerNorm):
|
|
module.bias.data.zero_()
|
|
module.weight.data.fill_(1.0)
|
|
elif isinstance(module, LayoutLMLMPredictionHead):
|
|
module.bias.data.zero_()
|
|
|
|
|
|
@auto_docstring
|
|
class LayoutLMModel(LayoutLMPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.config = config
|
|
|
|
self.embeddings = LayoutLMEmbeddings(config)
|
|
self.encoder = LayoutLMEncoder(config)
|
|
self.pooler = LayoutLMPooler(config)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embeddings.word_embeddings
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embeddings.word_embeddings = value
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
"""
|
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
|
class PreTrainedModel
|
|
"""
|
|
for layer, heads in heads_to_prune.items():
|
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
|
|
|
@deprecate_kwarg("encoder_hidden_states", version="4.54.0")
|
|
@deprecate_kwarg("encoder_attention_mask", version="4.54.0")
|
|
@can_return_tuple
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
bbox: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[tuple, BaseModelOutputWithPooling]:
|
|
r"""
|
|
bbox (`torch.LongTensor` of shape `(batch_size, sequence_length, 4)`, *optional*):
|
|
Bounding boxes of each input sequence tokens. Selected in the range `[0,
|
|
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
|
|
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
|
|
y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, LayoutLMModel
|
|
>>> import torch
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
>>> model = LayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
|
|
>>> words = ["Hello", "world"]
|
|
>>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
|
|
|
|
>>> token_boxes = []
|
|
>>> for word, box in zip(words, normalized_word_boxes):
|
|
... word_tokens = tokenizer.tokenize(word)
|
|
... token_boxes.extend([box] * len(word_tokens))
|
|
>>> # add bounding boxes of cls + sep tokens
|
|
>>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
|
|
|
|
>>> encoding = tokenizer(" ".join(words), return_tensors="pt")
|
|
>>> input_ids = encoding["input_ids"]
|
|
>>> attention_mask = encoding["attention_mask"]
|
|
>>> token_type_ids = encoding["token_type_ids"]
|
|
>>> bbox = torch.tensor([token_boxes])
|
|
|
|
>>> outputs = model(
|
|
... input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids
|
|
... )
|
|
|
|
>>> last_hidden_states = outputs.last_hidden_state
|
|
```"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
|
input_shape = input_ids.size()
|
|
elif inputs_embeds is not None:
|
|
input_shape = inputs_embeds.size()[:-1]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones(input_shape, device=device)
|
|
if token_type_ids is None:
|
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
|
|
|
if bbox is None:
|
|
bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device)
|
|
|
|
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
|
|
|
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
|
|
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
|
|
|
|
if head_mask is not None:
|
|
if head_mask.dim() == 1:
|
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
|
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
|
|
elif head_mask.dim() == 2:
|
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
|
|
head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
|
|
else:
|
|
head_mask = [None] * self.config.num_hidden_layers
|
|
|
|
embedding_output = self.embeddings(
|
|
input_ids=input_ids,
|
|
bbox=bbox,
|
|
position_ids=position_ids,
|
|
token_type_ids=token_type_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
encoder_outputs = self.encoder(
|
|
embedding_output,
|
|
extended_attention_mask,
|
|
head_mask=head_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
)
|
|
sequence_output = encoder_outputs[0]
|
|
pooled_output = self.pooler(sequence_output)
|
|
|
|
return BaseModelOutputWithPooling(
|
|
last_hidden_state=sequence_output,
|
|
pooler_output=pooled_output,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
@auto_docstring
|
|
class LayoutLMForMaskedLM(LayoutLMPreTrainedModel):
|
|
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
|
|
self.layoutlm = LayoutLMModel(config)
|
|
self.cls = LayoutLMOnlyMLMHead(config)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.layoutlm.embeddings.word_embeddings
|
|
|
|
def get_output_embeddings(self):
|
|
return self.cls.predictions.decoder
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.cls.predictions.decoder = new_embeddings
|
|
self.cls.predictions.bias = new_embeddings.bias
|
|
|
|
@deprecate_kwarg("encoder_hidden_states", version="4.54.0")
|
|
@deprecate_kwarg("encoder_attention_mask", version="4.54.0")
|
|
@can_return_tuple
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
bbox: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[tuple, MaskedLMOutput]:
|
|
r"""
|
|
bbox (`torch.LongTensor` of shape `(batch_size, sequence_length, 4)`, *optional*):
|
|
Bounding boxes of each input sequence tokens. Selected in the range `[0,
|
|
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
|
|
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
|
|
y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization.
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, LayoutLMForMaskedLM
|
|
>>> import torch
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
>>> model = LayoutLMForMaskedLM.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
|
|
>>> words = ["Hello", "[MASK]"]
|
|
>>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
|
|
|
|
>>> token_boxes = []
|
|
>>> for word, box in zip(words, normalized_word_boxes):
|
|
... word_tokens = tokenizer.tokenize(word)
|
|
... token_boxes.extend([box] * len(word_tokens))
|
|
>>> # add bounding boxes of cls + sep tokens
|
|
>>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
|
|
|
|
>>> encoding = tokenizer(" ".join(words), return_tensors="pt")
|
|
>>> input_ids = encoding["input_ids"]
|
|
>>> attention_mask = encoding["attention_mask"]
|
|
>>> token_type_ids = encoding["token_type_ids"]
|
|
>>> bbox = torch.tensor([token_boxes])
|
|
|
|
>>> labels = tokenizer("Hello world", return_tensors="pt")["input_ids"]
|
|
|
|
>>> outputs = model(
|
|
... input_ids=input_ids,
|
|
... bbox=bbox,
|
|
... attention_mask=attention_mask,
|
|
... token_type_ids=token_type_ids,
|
|
... labels=labels,
|
|
... )
|
|
|
|
>>> loss = outputs.loss
|
|
```"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.layoutlm(
|
|
input_ids,
|
|
bbox,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
prediction_scores = self.cls(sequence_output)
|
|
|
|
masked_lm_loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
masked_lm_loss = loss_fct(
|
|
prediction_scores.view(-1, self.config.vocab_size),
|
|
labels.view(-1),
|
|
)
|
|
|
|
return MaskedLMOutput(
|
|
loss=masked_lm_loss,
|
|
logits=prediction_scores,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@auto_docstring(
|
|
custom_intro="""
|
|
LayoutLM Model with a sequence classification head on top (a linear layer on top of the pooled output) e.g. for
|
|
document image classification tasks such as the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset.
|
|
"""
|
|
)
|
|
class LayoutLMForSequenceClassification(LayoutLMPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.layoutlm = LayoutLMModel(config)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.layoutlm.embeddings.word_embeddings
|
|
|
|
@can_return_tuple
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
bbox: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[tuple, SequenceClassifierOutput]:
|
|
r"""
|
|
bbox (`torch.LongTensor` of shape `(batch_size, sequence_length, 4)`, *optional*):
|
|
Bounding boxes of each input sequence tokens. Selected in the range `[0,
|
|
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
|
|
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
|
|
y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization.
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, LayoutLMForSequenceClassification
|
|
>>> import torch
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
>>> model = LayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
|
|
>>> words = ["Hello", "world"]
|
|
>>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
|
|
|
|
>>> token_boxes = []
|
|
>>> for word, box in zip(words, normalized_word_boxes):
|
|
... word_tokens = tokenizer.tokenize(word)
|
|
... token_boxes.extend([box] * len(word_tokens))
|
|
>>> # add bounding boxes of cls + sep tokens
|
|
>>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
|
|
|
|
>>> encoding = tokenizer(" ".join(words), return_tensors="pt")
|
|
>>> input_ids = encoding["input_ids"]
|
|
>>> attention_mask = encoding["attention_mask"]
|
|
>>> token_type_ids = encoding["token_type_ids"]
|
|
>>> bbox = torch.tensor([token_boxes])
|
|
>>> sequence_label = torch.tensor([1])
|
|
|
|
>>> outputs = model(
|
|
... input_ids=input_ids,
|
|
... bbox=bbox,
|
|
... attention_mask=attention_mask,
|
|
... token_type_ids=token_type_ids,
|
|
... labels=sequence_label,
|
|
... )
|
|
|
|
>>> loss = outputs.loss
|
|
>>> logits = outputs.logits
|
|
```"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.layoutlm(
|
|
input_ids=input_ids,
|
|
bbox=bbox,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
)
|
|
|
|
pooled_output = outputs[1]
|
|
|
|
pooled_output = self.dropout(pooled_output)
|
|
logits = self.classifier(pooled_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(logits, labels)
|
|
|
|
return SequenceClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@auto_docstring(
|
|
custom_intro="""
|
|
LayoutLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
|
sequence labeling (information extraction) tasks such as the [FUNSD](https://guillaumejaume.github.io/FUNSD/)
|
|
dataset and the [SROIE](https://rrc.cvc.uab.es/?ch=13) dataset.
|
|
"""
|
|
)
|
|
class LayoutLMForTokenClassification(LayoutLMPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.layoutlm = LayoutLMModel(config)
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.layoutlm.embeddings.word_embeddings
|
|
|
|
@can_return_tuple
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
bbox: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[tuple, TokenClassifierOutput]:
|
|
r"""
|
|
bbox (`torch.LongTensor` of shape `(batch_size, sequence_length, 4)`, *optional*):
|
|
Bounding boxes of each input sequence tokens. Selected in the range `[0,
|
|
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
|
|
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
|
|
y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization.
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, LayoutLMForTokenClassification
|
|
>>> import torch
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
>>> model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased")
|
|
|
|
>>> words = ["Hello", "world"]
|
|
>>> normalized_word_boxes = [637, 773, 693, 782], [698, 773, 733, 782]
|
|
|
|
>>> token_boxes = []
|
|
>>> for word, box in zip(words, normalized_word_boxes):
|
|
... word_tokens = tokenizer.tokenize(word)
|
|
... token_boxes.extend([box] * len(word_tokens))
|
|
>>> # add bounding boxes of cls + sep tokens
|
|
>>> token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]
|
|
|
|
>>> encoding = tokenizer(" ".join(words), return_tensors="pt")
|
|
>>> input_ids = encoding["input_ids"]
|
|
>>> attention_mask = encoding["attention_mask"]
|
|
>>> token_type_ids = encoding["token_type_ids"]
|
|
>>> bbox = torch.tensor([token_boxes])
|
|
>>> token_labels = torch.tensor([1, 1, 0, 0]).unsqueeze(0) # batch size of 1
|
|
|
|
>>> outputs = model(
|
|
... input_ids=input_ids,
|
|
... bbox=bbox,
|
|
... attention_mask=attention_mask,
|
|
... token_type_ids=token_type_ids,
|
|
... labels=token_labels,
|
|
... )
|
|
|
|
>>> loss = outputs.loss
|
|
>>> logits = outputs.logits
|
|
```"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.layoutlm(
|
|
input_ids=input_ids,
|
|
bbox=bbox,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
sequence_output = self.dropout(sequence_output)
|
|
logits = self.classifier(sequence_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
return TokenClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@auto_docstring
|
|
class LayoutLMForQuestionAnswering(LayoutLMPreTrainedModel):
|
|
def __init__(self, config, has_visual_segment_embedding=True):
|
|
r"""
|
|
has_visual_segment_embedding (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to add visual segment embeddings.
|
|
"""
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.layoutlm = LayoutLMModel(config)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.layoutlm.embeddings.word_embeddings
|
|
|
|
@can_return_tuple
|
|
@auto_docstring
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
bbox: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
head_mask: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
start_positions: Optional[torch.LongTensor] = None,
|
|
end_positions: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[tuple, QuestionAnsweringModelOutput]:
|
|
r"""
|
|
bbox (`torch.LongTensor` of shape `(batch_size, sequence_length, 4)`, *optional*):
|
|
Bounding boxes of each input sequence tokens. Selected in the range `[0,
|
|
config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
|
|
format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
|
|
y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization.
|
|
|
|
Example:
|
|
|
|
In the example below, we prepare a question + context pair for the LayoutLM model. It will give us a prediction
|
|
of what it thinks the answer is (the span of the answer within the texts parsed from the image).
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, LayoutLMForQuestionAnswering
|
|
>>> from datasets import load_dataset
|
|
>>> import torch
|
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("impira/layoutlm-document-qa", add_prefix_space=True)
|
|
>>> model = LayoutLMForQuestionAnswering.from_pretrained("impira/layoutlm-document-qa", revision="1e3ebac")
|
|
|
|
>>> dataset = load_dataset("nielsr/funsd", split="train")
|
|
>>> example = dataset[0]
|
|
>>> question = "what's his name?"
|
|
>>> words = example["words"]
|
|
>>> boxes = example["bboxes"]
|
|
|
|
>>> encoding = tokenizer(
|
|
... question.split(), words, is_split_into_words=True, return_token_type_ids=True, return_tensors="pt"
|
|
... )
|
|
>>> bbox = []
|
|
>>> for i, s, w in zip(encoding.input_ids[0], encoding.sequence_ids(0), encoding.word_ids(0)):
|
|
... if s == 1:
|
|
... bbox.append(boxes[w])
|
|
... elif i == tokenizer.sep_token_id:
|
|
... bbox.append([1000] * 4)
|
|
... else:
|
|
... bbox.append([0] * 4)
|
|
>>> encoding["bbox"] = torch.tensor([bbox])
|
|
|
|
>>> word_ids = encoding.word_ids(0)
|
|
>>> outputs = model(**encoding)
|
|
>>> loss = outputs.loss
|
|
>>> start_scores = outputs.start_logits
|
|
>>> end_scores = outputs.end_logits
|
|
>>> start, end = word_ids[start_scores.argmax(-1)], word_ids[end_scores.argmax(-1)]
|
|
>>> print(" ".join(words[start : end + 1]))
|
|
M. Hamann P. Harper, P. Martinez
|
|
```"""
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.layoutlm(
|
|
input_ids=input_ids,
|
|
bbox=bbox,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=True,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
total_loss = None
|
|
if start_positions is not None and end_positions is not None:
|
|
# If we are on multi-GPU, split add a dimension
|
|
if len(start_positions.size()) > 1:
|
|
start_positions = start_positions.squeeze(-1)
|
|
if len(end_positions.size()) > 1:
|
|
end_positions = end_positions.squeeze(-1)
|
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
|
ignored_index = start_logits.size(1)
|
|
start_positions = start_positions.clamp(0, ignored_index)
|
|
end_positions = end_positions.clamp(0, ignored_index)
|
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
|
start_loss = loss_fct(start_logits, start_positions)
|
|
end_loss = loss_fct(end_logits, end_positions)
|
|
total_loss = (start_loss + end_loss) / 2
|
|
|
|
return QuestionAnsweringModelOutput(
|
|
loss=total_loss,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"LayoutLMForMaskedLM",
|
|
"LayoutLMForSequenceClassification",
|
|
"LayoutLMForTokenClassification",
|
|
"LayoutLMForQuestionAnswering",
|
|
"LayoutLMModel",
|
|
"LayoutLMPreTrainedModel",
|
|
]
|