team-10/venv/Lib/site-packages/transformers/models/olmo2/modular_olmo2.py
2025-08-02 02:00:33 +02:00

318 lines
14 KiB
Python

from typing import Callable, Optional
import torch
import torch.nn as nn
from transformers.utils.generic import TransformersKwargs
from ...cache_utils import Cache
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import logging
from ..llama.modeling_llama import LlamaPreTrainedModel, LlamaRMSNorm, eager_attention_forward
from ..olmo.configuration_olmo import OlmoConfig
from ..olmo.modeling_olmo import (
OlmoAttention,
OlmoDecoderLayer,
OlmoForCausalLM,
OlmoModel,
OlmoRotaryEmbedding,
apply_rotary_pos_emb,
)
logger = logging.get_logger(__name__)
class Olmo2Config(OlmoConfig):
r"""
This is the configuration class to store the configuration of a [`Olmo2Model`]. It is used to instantiate an OLMo2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the [allenai/Olmo2-7B-1124-hf](https://huggingface.co/allenai/Olmo2-7B-1124-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50304):
Vocabulary size of the Olmo2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Olmo2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details, check out [this
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 50279):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
```python
>>> from transformers import Olmo2Model, Olmo2Config
>>> # Initializing a Olmo2 7B style configuration
>>> configuration = Olmo2Config()
>>> # Initializing a model from the Olmo2 7B style configuration
>>> model = Olmo2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "olmo2"
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.self_attn.k_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.self_attn.v_proj": "colwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.self_attn.o_proj": "rowwise_rep", # we need to replicate here due to the added norm on q and k
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=50304,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
rms_norm_eps=1e-5,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
hidden_act=hidden_act,
max_position_embeddings=max_position_embeddings,
initializer_range=initializer_range,
use_cache=use_cache,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
attention_bias=attention_bias,
attention_dropout=attention_dropout,
**kwargs,
)
self.rms_norm_eps = rms_norm_eps
del self.clip_qkv
# OLMo2 RMS norm is identical to Llama RMS norm except:
# - Weight and hidden states are multiplied before converting back to the input dtype, rather than after.
class Olmo2RMSNorm(LlamaRMSNorm):
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return (self.weight * hidden_states).to(input_dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Olmo2 attention is identical to OLMo attention except:
# - Norm is applied to attention queries and keys.
# - No qkv clipping.
class Olmo2Attention(OlmoAttention):
def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx=layer_idx)
self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim, config.rms_norm_eps)
self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim, config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states))
key_states = self.k_norm(self.k_proj(hidden_states))
value_states = self.v_proj(hidden_states)
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
# The OLMo2 layers are identical to those of the OLMo model except:
# - RMSNorm is used instead of standard layer norm.
# - Norm is applied after attention/feedforward rather than before.
class Olmo2DecoderLayer(OlmoDecoderLayer):
def __init__(self, config: Olmo2Config, layer_idx: int):
super().__init__(config, layer_idx=layer_idx)
self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx)
del self.input_layernorm
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Olmo2RotaryEmbedding(OlmoRotaryEmbedding):
pass
class Olmo2PreTrainedModel(LlamaPreTrainedModel):
pass
# The OLMo2 model is identical to the OLMo model, except RMSNorm is used instead of
# standard layer norm for the output norm.
class Olmo2Model(OlmoModel):
def __init__(self, config: Olmo2Config):
super().__init__(config)
self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.layers = nn.ModuleList(
[Olmo2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
# The heads now only need to redefine the model inside to the correct `RobertaModel`
class Olmo2ForCausalLM(OlmoForCausalLM):
pass
__all__ = [
"Olmo2Config",
"Olmo2ForCausalLM",
"Olmo2Model",
"Olmo2PreTrainedModel", # noqa: F822
]