team-10/venv/Lib/site-packages/transformers/quantizers/quantizer_higgs.py
2025-08-02 02:00:33 +02:00

202 lines
8.3 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Optional
from ..utils.logging import tqdm
from .base import HfQuantizer
from .quantizers_utils import get_module_from_name
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..utils import is_accelerate_available, is_flute_available, is_hadamard_available, is_torch_available, logging
from ..utils.quantization_config import QuantizationConfigMixin
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class HiggsHfQuantizer(HfQuantizer):
"""
Quantizer of the HIGGS method. Enables the loading of prequantized models and in-flight quantization of full-precision models.
"""
requires_calibration = False
requires_parameters_quantization = True
required_packages = ["flute-kernel", "fast_hadamard_transform"]
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, device_map, **kwargs):
if not torch.cuda.is_available():
raise NotImplementedError("HIGGS quantization is only supported on GPU. Please use a different quantizer.")
if not is_accelerate_available():
raise ImportError("Using `higgs` quantization requires Accelerate: `pip install accelerate`")
if not is_flute_available():
raise ImportError("Using `higgs` quantization requires FLUTE: `pip install flute-kernel>=0.3.0`")
if not is_hadamard_available():
raise ImportError(
"Using `higgs` quantization requires fast_hadamard_transform: `pip install fast_hadamard_transform`"
)
if device_map is None:
raise ValueError(
"You are attempting to load a HIGGS model without setting device_map."
" Please set device_map comprised of 'cuda' devices."
)
elif isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
raise ValueError(
"You are attempting to load a HIGGS model with a device_map that contains a CPU or disk device."
" This is not supported. Please remove the CPU or disk device from the device_map."
)
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
logger.info("`torch_dtype` is None. Setting `torch_dtype=torch.float16` for FLUTE compatibility.")
torch_dtype = torch.float16
elif torch_dtype != torch.float16 and torch_dtype != torch.bfloat16:
raise ValueError(
f"Invalid `torch_dtype` {torch_dtype}. HIGGS quantization only supports `torch_dtype=torch.float16` or `torch_dtype=torch.bfloat16`."
)
return torch_dtype
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: dict[str, Any],
unexpected_keys: Optional[list[str]] = None,
):
from ..integrations import quantize_with_higgs
"""
Quantizes weights into weight and weight_scale
"""
flute_dict = quantize_with_higgs(
param_value.to(target_device),
self.quantization_config.bits,
self.quantization_config.p,
self.quantization_config.group_size,
self.quantization_config.hadamard_size,
)
del param_value
module, _ = get_module_from_name(model, param_name)
module_name = ".".join(param_name.split(".")[:-1])
for key, value in flute_dict.items():
if key in module._parameters:
module._parameters[key] = torch.nn.Parameter(value, requires_grad=False)
elif key in module._buffers:
module._buffers[key] = torch.nn.Buffer(value)
elif key == "tune_metadata":
module.tune_metadata = value
self.quantization_config.tune_metadata[module_name] = value.to_dict()
else:
raise ValueError(f"Unexpected key {key} in module {module}")
if unexpected_keys is not None and param_name in unexpected_keys:
unexpected_keys.remove(param_name)
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
**kwargs,
):
from ..integrations import replace_with_higgs_linear
replace_with_higgs_linear(
model,
quantization_config=self.quantization_config,
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
from flute.tune import TuneMetaData, maybe_tune_and_repack
from flute.utils import make_workspace_streamk
from ..integrations import HiggsLinear
flute_workspaces = {}
flute_modules = {name: module for name, module in model.named_modules() if isinstance(module, HiggsLinear)}
for name, module in tqdm(flute_modules.items(), desc="Repacking HIGGS modules", leave=False):
# Every HiggsLinear needs a "workspace": a buffer for the unpacking operation.
# This buffer needs to be on the same device as the weights, but can be reused across modules otherwise.
if module.weight.device not in flute_workspaces:
flute_workspaces[module.weight.device] = make_workspace_streamk(device=module.weight.device)
module.workspace = flute_workspaces[module.weight.device]
# FLUTE weights are packed in a way that is optimized for a specific number of SMs (GPU streaming multiprocessors).
# If the model is loaded on a different device than the one it was saved on, we need to repack the weights.
module.tune_metadata = TuneMetaData.from_dict(self.quantization_config.tune_metadata[name])
module.weight.data, module.tune_metadata = maybe_tune_and_repack(
weight=module.weight.data,
scales=module.scales.data,
metadata=module.tune_metadata,
)
self.quantization_config.tune_metadata[name] = module.tune_metadata.to_dict()
def update_missing_keys(self, model, missing_keys: list[str], prefix: str) -> list[str]:
from ..integrations import HiggsLinear
higgs_names = {name for name, module in model.named_modules() if isinstance(module, HiggsLinear)}
def should_update(key: str) -> bool:
if key.endswith(".weight") or key.endswith(".bias"):
return False
full_key = f"{prefix}.{key}"
return any(name in key or name in full_key for name in higgs_names)
return [key for key in missing_keys if not should_update(key)]
@property
def is_trainable(self) -> bool:
return False
def is_serializable(self, safe_serialization=None):
return True
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: dict[str, Any],
**kwargs,
) -> bool:
from ..integrations import HiggsLinear
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module, HiggsLinear) and tensor_name == "weight" and param_value.dtype != torch.int16:
# Only quantize weights of HiggsLinear modules that are not already quantized
return True
else:
return False
def _dequantize(self, model):
from ..integrations import dequantize_higgs
model = dequantize_higgs(model)
return model