team-10/env/Lib/site-packages/narwhals/_compliant/dataframe.py
2025-08-02 07:34:44 +02:00

486 lines
17 KiB
Python

from __future__ import annotations
from collections.abc import Iterator, Mapping, Sequence, Sized
from itertools import chain
from typing import TYPE_CHECKING, Any, Literal, Protocol, TypeVar, overload
from narwhals._compliant.typing import (
CompliantDataFrameAny,
CompliantExprT_contra,
CompliantLazyFrameAny,
CompliantSeriesT,
EagerExprT,
EagerSeriesT,
NativeFrameT,
NativeSeriesT,
)
from narwhals._translate import (
ArrowConvertible,
DictConvertible,
FromNative,
NumpyConvertible,
ToNarwhals,
ToNarwhalsT_co,
)
from narwhals._typing_compat import assert_never
from narwhals._utils import (
ValidateBackendVersion,
Version,
_StoresNative,
check_columns_exist,
is_compliant_series,
is_index_selector,
is_range,
is_sequence_like,
is_sized_multi_index_selector,
is_slice_index,
is_slice_none,
)
if TYPE_CHECKING:
from io import BytesIO
from pathlib import Path
import pandas as pd
import polars as pl
import pyarrow as pa
from typing_extensions import Self, TypeAlias
from narwhals._compliant.group_by import CompliantGroupBy, DataFrameGroupBy
from narwhals._compliant.namespace import EagerNamespace
from narwhals._translate import IntoArrowTable
from narwhals._utils import Implementation, _LimitedContext
from narwhals.dataframe import DataFrame
from narwhals.dtypes import DType
from narwhals.exceptions import ColumnNotFoundError
from narwhals.schema import Schema
from narwhals.typing import (
AsofJoinStrategy,
JoinStrategy,
LazyUniqueKeepStrategy,
MultiColSelector,
MultiIndexSelector,
PivotAgg,
SingleIndexSelector,
SizedMultiIndexSelector,
SizedMultiNameSelector,
SizeUnit,
UniqueKeepStrategy,
_2DArray,
_SliceIndex,
_SliceName,
)
Incomplete: TypeAlias = Any
__all__ = ["CompliantDataFrame", "CompliantLazyFrame", "EagerDataFrame"]
T = TypeVar("T")
_ToDict: TypeAlias = "dict[str, CompliantSeriesT] | dict[str, list[Any]]" # noqa: PYI047
class CompliantDataFrame(
NumpyConvertible["_2DArray", "_2DArray"],
DictConvertible["_ToDict[CompliantSeriesT]", Mapping[str, Any]],
ArrowConvertible["pa.Table", "IntoArrowTable"],
_StoresNative[NativeFrameT],
FromNative[NativeFrameT],
ToNarwhals[ToNarwhalsT_co],
Sized,
Protocol[CompliantSeriesT, CompliantExprT_contra, NativeFrameT, ToNarwhalsT_co],
):
_native_frame: NativeFrameT
_implementation: Implementation
_version: Version
def __narwhals_dataframe__(self) -> Self: ...
def __narwhals_namespace__(self) -> Any: ...
@classmethod
def from_arrow(cls, data: IntoArrowTable, /, *, context: _LimitedContext) -> Self: ...
@classmethod
def from_dict(
cls,
data: Mapping[str, Any],
/,
*,
context: _LimitedContext,
schema: Mapping[str, DType] | Schema | None,
) -> Self: ...
@classmethod
def from_native(cls, data: NativeFrameT, /, *, context: _LimitedContext) -> Self: ...
@classmethod
def from_numpy(
cls,
data: _2DArray,
/,
*,
context: _LimitedContext,
schema: Mapping[str, DType] | Schema | Sequence[str] | None,
) -> Self: ...
def __array__(self, dtype: Any, *, copy: bool | None) -> _2DArray: ...
def __getitem__(
self,
item: tuple[
SingleIndexSelector | MultiIndexSelector[CompliantSeriesT],
MultiColSelector[CompliantSeriesT],
],
) -> Self: ...
def simple_select(self, *column_names: str) -> Self:
"""`select` where all args are column names."""
...
def aggregate(self, *exprs: CompliantExprT_contra) -> Self:
"""`select` where all args are aggregations or literals.
(so, no broadcasting is necessary).
"""
# NOTE: Ignore is to avoid an intermittent false positive
return self.select(*exprs) # pyright: ignore[reportArgumentType]
def _with_version(self, version: Version) -> Self: ...
@property
def native(self) -> NativeFrameT:
return self._native_frame
@property
def columns(self) -> Sequence[str]: ...
@property
def schema(self) -> Mapping[str, DType]: ...
@property
def shape(self) -> tuple[int, int]: ...
def clone(self) -> Self: ...
def collect(
self, backend: Implementation | None, **kwargs: Any
) -> CompliantDataFrameAny: ...
def collect_schema(self) -> Mapping[str, DType]: ...
def drop(self, columns: Sequence[str], *, strict: bool) -> Self: ...
def drop_nulls(self, subset: Sequence[str] | None) -> Self: ...
def estimated_size(self, unit: SizeUnit) -> int | float: ...
def explode(self, columns: Sequence[str]) -> Self: ...
def filter(self, predicate: CompliantExprT_contra | Incomplete) -> Self: ...
def gather_every(self, n: int, offset: int) -> Self: ...
def get_column(self, name: str) -> CompliantSeriesT: ...
def group_by(
self,
keys: Sequence[str] | Sequence[CompliantExprT_contra],
*,
drop_null_keys: bool,
) -> DataFrameGroupBy[Self, Any]: ...
def head(self, n: int) -> Self: ...
def item(self, row: int | None, column: int | str | None) -> Any: ...
def iter_columns(self) -> Iterator[CompliantSeriesT]: ...
def iter_rows(
self, *, named: bool, buffer_size: int
) -> Iterator[tuple[Any, ...]] | Iterator[Mapping[str, Any]]: ...
def is_unique(self) -> CompliantSeriesT: ...
def join(
self,
other: Self,
*,
how: JoinStrategy,
left_on: Sequence[str] | None,
right_on: Sequence[str] | None,
suffix: str,
) -> Self: ...
def join_asof(
self,
other: Self,
*,
left_on: str,
right_on: str,
by_left: Sequence[str] | None,
by_right: Sequence[str] | None,
strategy: AsofJoinStrategy,
suffix: str,
) -> Self: ...
def lazy(self, *, backend: Implementation | None) -> CompliantLazyFrameAny: ...
def pivot(
self,
on: Sequence[str],
*,
index: Sequence[str] | None,
values: Sequence[str] | None,
aggregate_function: PivotAgg | None,
sort_columns: bool,
separator: str,
) -> Self: ...
def rename(self, mapping: Mapping[str, str]) -> Self: ...
def row(self, index: int) -> tuple[Any, ...]: ...
def rows(
self, *, named: bool
) -> Sequence[tuple[Any, ...]] | Sequence[Mapping[str, Any]]: ...
def sample(
self,
n: int | None,
*,
fraction: float | None,
with_replacement: bool,
seed: int | None,
) -> Self: ...
def select(self, *exprs: CompliantExprT_contra) -> Self: ...
def sort(
self, *by: str, descending: bool | Sequence[bool], nulls_last: bool
) -> Self: ...
def tail(self, n: int) -> Self: ...
def to_arrow(self) -> pa.Table: ...
def to_pandas(self) -> pd.DataFrame: ...
def to_polars(self) -> pl.DataFrame: ...
@overload
def to_dict(self, *, as_series: Literal[True]) -> dict[str, CompliantSeriesT]: ...
@overload
def to_dict(self, *, as_series: Literal[False]) -> dict[str, list[Any]]: ...
def to_dict(
self, *, as_series: bool
) -> dict[str, CompliantSeriesT] | dict[str, list[Any]]: ...
def unique(
self,
subset: Sequence[str] | None,
*,
keep: UniqueKeepStrategy,
maintain_order: bool | None = None,
) -> Self: ...
def unpivot(
self,
on: Sequence[str] | None,
index: Sequence[str] | None,
variable_name: str,
value_name: str,
) -> Self: ...
def with_columns(self, *exprs: CompliantExprT_contra) -> Self: ...
def with_row_index(self, name: str, order_by: Sequence[str] | None) -> Self: ...
@overload
def write_csv(self, file: None) -> str: ...
@overload
def write_csv(self, file: str | Path | BytesIO) -> None: ...
def write_csv(self, file: str | Path | BytesIO | None) -> str | None: ...
def write_parquet(self, file: str | Path | BytesIO) -> None: ...
def _evaluate_aliases(self, *exprs: CompliantExprT_contra) -> list[str]:
it = (expr._evaluate_aliases(self) for expr in exprs)
return list(chain.from_iterable(it))
def _check_columns_exist(self, subset: Sequence[str]) -> ColumnNotFoundError | None:
return check_columns_exist(subset, available=self.columns)
class CompliantLazyFrame(
_StoresNative[NativeFrameT],
FromNative[NativeFrameT],
ToNarwhals[ToNarwhalsT_co],
Protocol[CompliantExprT_contra, NativeFrameT, ToNarwhalsT_co],
):
_native_frame: NativeFrameT
_implementation: Implementation
_version: Version
def __narwhals_lazyframe__(self) -> Self: ...
def __narwhals_namespace__(self) -> Any: ...
@classmethod
def from_native(cls, data: NativeFrameT, /, *, context: _LimitedContext) -> Self: ...
def simple_select(self, *column_names: str) -> Self:
"""`select` where all args are column names."""
...
def aggregate(self, *exprs: CompliantExprT_contra) -> Self:
"""`select` where all args are aggregations or literals.
(so, no broadcasting is necessary).
"""
...
def _with_version(self, version: Version) -> Self: ...
@property
def native(self) -> NativeFrameT:
return self._native_frame
@property
def columns(self) -> Sequence[str]: ...
@property
def schema(self) -> Mapping[str, DType]: ...
def _iter_columns(self) -> Iterator[Any]: ...
def collect(
self, backend: Implementation | None, **kwargs: Any
) -> CompliantDataFrameAny: ...
def collect_schema(self) -> Mapping[str, DType]: ...
def drop(self, columns: Sequence[str], *, strict: bool) -> Self: ...
def drop_nulls(self, subset: Sequence[str] | None) -> Self: ...
def explode(self, columns: Sequence[str]) -> Self: ...
def filter(self, predicate: CompliantExprT_contra | Incomplete) -> Self: ...
def group_by(
self,
keys: Sequence[str] | Sequence[CompliantExprT_contra],
*,
drop_null_keys: bool,
) -> CompliantGroupBy[Self, CompliantExprT_contra]: ...
def head(self, n: int) -> Self: ...
def join(
self,
other: Self,
*,
how: JoinStrategy,
left_on: Sequence[str] | None,
right_on: Sequence[str] | None,
suffix: str,
) -> Self: ...
def join_asof(
self,
other: Self,
*,
left_on: str,
right_on: str,
by_left: Sequence[str] | None,
by_right: Sequence[str] | None,
strategy: AsofJoinStrategy,
suffix: str,
) -> Self: ...
def rename(self, mapping: Mapping[str, str]) -> Self: ...
def select(self, *exprs: CompliantExprT_contra) -> Self: ...
def sink_parquet(self, file: str | Path | BytesIO) -> None: ...
def sort(
self, *by: str, descending: bool | Sequence[bool], nulls_last: bool
) -> Self: ...
def unique(
self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy
) -> Self: ...
def unpivot(
self,
on: Sequence[str] | None,
index: Sequence[str] | None,
variable_name: str,
value_name: str,
) -> Self: ...
def with_columns(self, *exprs: CompliantExprT_contra) -> Self: ...
def with_row_index(self, name: str, order_by: Sequence[str]) -> Self: ...
def _evaluate_expr(self, expr: CompliantExprT_contra, /) -> Any:
result = expr(self)
assert len(result) == 1 # debug assertion # noqa: S101
return result[0]
def _evaluate_aliases(self, *exprs: CompliantExprT_contra) -> list[str]:
it = (expr._evaluate_aliases(self) for expr in exprs)
return list(chain.from_iterable(it))
def _check_columns_exist(self, subset: Sequence[str]) -> ColumnNotFoundError | None:
return check_columns_exist(subset, available=self.columns)
class EagerDataFrame(
CompliantDataFrame[EagerSeriesT, EagerExprT, NativeFrameT, "DataFrame[NativeFrameT]"],
CompliantLazyFrame[EagerExprT, NativeFrameT, "DataFrame[NativeFrameT]"],
ValidateBackendVersion,
Protocol[EagerSeriesT, EagerExprT, NativeFrameT, NativeSeriesT],
):
@property
def _backend_version(self) -> tuple[int, ...]:
return self._implementation._backend_version()
def __narwhals_namespace__(
self,
) -> EagerNamespace[Self, EagerSeriesT, EagerExprT, NativeFrameT, NativeSeriesT]: ...
def to_narwhals(self) -> DataFrame[NativeFrameT]:
return self._version.dataframe(self, level="full")
def _with_native(
self, df: NativeFrameT, *, validate_column_names: bool = True
) -> Self: ...
def _evaluate_expr(self, expr: EagerExprT, /) -> EagerSeriesT:
"""Evaluate `expr` and ensure it has a **single** output."""
result: Sequence[EagerSeriesT] = expr(self)
assert len(result) == 1 # debug assertion # noqa: S101
return result[0]
def _evaluate_into_exprs(self, *exprs: EagerExprT) -> Sequence[EagerSeriesT]:
# NOTE: Ignore is to avoid an intermittent false positive
return list(chain.from_iterable(self._evaluate_into_expr(expr) for expr in exprs)) # pyright: ignore[reportArgumentType]
def _evaluate_into_expr(self, expr: EagerExprT, /) -> Sequence[EagerSeriesT]:
"""Return list of raw columns.
For eager backends we alias operations at each step.
As a safety precaution, here we can check that the expected result names match those
we were expecting from the various `evaluate_output_names` / `alias_output_names` calls.
Note that for PySpark / DuckDB, we are less free to liberally set aliases whenever we want.
"""
aliases = expr._evaluate_aliases(self)
result = expr(self)
if list(aliases) != (
result_aliases := [s.name for s in result]
): # pragma: no cover
msg = f"Safety assertion failed, expected {aliases}, got {result_aliases}"
raise AssertionError(msg)
return result
def _extract_comparand(self, other: EagerSeriesT, /) -> Any:
"""Extract native Series, broadcasting to `len(self)` if necessary."""
...
@staticmethod
def _numpy_column_names(
data: _2DArray, columns: Sequence[str] | None, /
) -> list[str]:
return list(columns or (f"column_{x}" for x in range(data.shape[1])))
def _gather(self, rows: SizedMultiIndexSelector[NativeSeriesT]) -> Self: ...
def _gather_slice(self, rows: _SliceIndex | range) -> Self: ...
def _select_multi_index(
self, columns: SizedMultiIndexSelector[NativeSeriesT]
) -> Self: ...
def _select_multi_name(
self, columns: SizedMultiNameSelector[NativeSeriesT]
) -> Self: ...
def _select_slice_index(self, columns: _SliceIndex | range) -> Self: ...
def _select_slice_name(self, columns: _SliceName) -> Self: ...
def __getitem__( # noqa: C901, PLR0912
self,
item: tuple[
SingleIndexSelector | MultiIndexSelector[EagerSeriesT],
MultiColSelector[EagerSeriesT],
],
) -> Self:
rows, columns = item
compliant = self
if not is_slice_none(columns):
if isinstance(columns, Sized) and len(columns) == 0:
return compliant.select()
if is_index_selector(columns):
if is_slice_index(columns) or is_range(columns):
compliant = compliant._select_slice_index(columns)
elif is_compliant_series(columns):
compliant = self._select_multi_index(columns.native)
else:
compliant = compliant._select_multi_index(columns)
elif isinstance(columns, slice):
compliant = compliant._select_slice_name(columns)
elif is_compliant_series(columns):
compliant = self._select_multi_name(columns.native)
elif is_sequence_like(columns):
compliant = self._select_multi_name(columns)
else:
assert_never(columns)
if not is_slice_none(rows):
if isinstance(rows, int):
compliant = compliant._gather([rows])
elif isinstance(rows, (slice, range)):
compliant = compliant._gather_slice(rows)
elif is_compliant_series(rows):
compliant = compliant._gather(rows.native)
elif is_sized_multi_index_selector(rows):
compliant = compliant._gather(rows)
else:
assert_never(rows)
return compliant
def sink_parquet(self, file: str | Path | BytesIO) -> None:
return self.write_parquet(file)