team-10/env/Lib/site-packages/narwhals/_ibis/dataframe.py
2025-08-02 07:34:44 +02:00

420 lines
16 KiB
Python

from __future__ import annotations
import operator
from io import BytesIO
from typing import TYPE_CHECKING, Any, Literal, cast
import ibis
import ibis.expr.types as ir
from narwhals._ibis.utils import evaluate_exprs, native_to_narwhals_dtype
from narwhals._utils import (
Implementation,
ValidateBackendVersion,
Version,
not_implemented,
parse_columns_to_drop,
)
from narwhals.exceptions import ColumnNotFoundError, InvalidOperationError
from narwhals.typing import CompliantLazyFrame
if TYPE_CHECKING:
from collections.abc import Iterable, Iterator, Mapping, Sequence
from pathlib import Path
from types import ModuleType
import pandas as pd
import pyarrow as pa
from ibis.expr.operations import Binary
from typing_extensions import Self, TypeAlias, TypeIs
from narwhals._compliant.typing import CompliantDataFrameAny
from narwhals._ibis.expr import IbisExpr
from narwhals._ibis.group_by import IbisGroupBy
from narwhals._ibis.namespace import IbisNamespace
from narwhals._ibis.series import IbisInterchangeSeries
from narwhals._utils import _LimitedContext
from narwhals.dataframe import LazyFrame
from narwhals.dtypes import DType
from narwhals.stable.v1 import DataFrame as DataFrameV1
from narwhals.typing import AsofJoinStrategy, JoinStrategy, LazyUniqueKeepStrategy
JoinPredicates: TypeAlias = "Sequence[ir.BooleanColumn] | Sequence[str]"
class IbisLazyFrame(
CompliantLazyFrame[
"IbisExpr", "ir.Table", "LazyFrame[ir.Table] | DataFrameV1[ir.Table]"
],
ValidateBackendVersion,
):
_implementation = Implementation.IBIS
def __init__(
self, df: ir.Table, *, version: Version, validate_backend_version: bool = False
) -> None:
self._native_frame: ir.Table = df
self._version = version
self._cached_schema: dict[str, DType] | None = None
self._cached_columns: list[str] | None = None
if validate_backend_version:
self._validate_backend_version()
@staticmethod
def _is_native(obj: ir.Table | Any) -> TypeIs[ir.Table]:
return isinstance(obj, ir.Table)
@classmethod
def from_native(cls, data: ir.Table, /, *, context: _LimitedContext) -> Self:
return cls(data, version=context._version)
def to_narwhals(self) -> LazyFrame[ir.Table] | DataFrameV1[ir.Table]:
if self._version is Version.V1:
from narwhals.stable.v1 import DataFrame
return DataFrame(self, level="interchange")
return self._version.lazyframe(self, level="lazy")
def __narwhals_dataframe__(self) -> Self: # pragma: no cover
# Keep around for backcompat.
if self._version is not Version.V1:
msg = "__narwhals_dataframe__ is not implemented for IbisLazyFrame"
raise AttributeError(msg)
return self
def __narwhals_lazyframe__(self) -> Self:
return self
def __native_namespace__(self) -> ModuleType:
return ibis
def __narwhals_namespace__(self) -> IbisNamespace:
from narwhals._ibis.namespace import IbisNamespace
return IbisNamespace(version=self._version)
def get_column(self, name: str) -> IbisInterchangeSeries:
from narwhals._ibis.series import IbisInterchangeSeries
return IbisInterchangeSeries(self.native.select(name), version=self._version)
def _iter_columns(self) -> Iterator[ir.Expr]:
for name in self.columns:
yield self.native[name]
def collect(
self, backend: ModuleType | Implementation | str | None, **kwargs: Any
) -> CompliantDataFrameAny:
if backend is None or backend is Implementation.PYARROW:
from narwhals._arrow.dataframe import ArrowDataFrame
return ArrowDataFrame(
self.native.to_pyarrow(),
validate_backend_version=True,
version=self._version,
validate_column_names=True,
)
if backend is Implementation.PANDAS:
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
return PandasLikeDataFrame(
self.native.to_pandas(),
implementation=Implementation.PANDAS,
validate_backend_version=True,
version=self._version,
validate_column_names=True,
)
if backend is Implementation.POLARS:
from narwhals._polars.dataframe import PolarsDataFrame
return PolarsDataFrame(
self.native.to_polars(),
validate_backend_version=True,
version=self._version,
)
msg = f"Unsupported `backend` value: {backend}" # pragma: no cover
raise ValueError(msg) # pragma: no cover
def head(self, n: int) -> Self:
return self._with_native(self.native.head(n))
def simple_select(self, *column_names: str) -> Self:
return self._with_native(self.native.select(*column_names))
def aggregate(self, *exprs: IbisExpr) -> Self:
selection = [
cast("ir.Scalar", val.name(name))
for name, val in evaluate_exprs(self, *exprs)
]
return self._with_native(self.native.aggregate(selection))
def select(self, *exprs: IbisExpr) -> Self:
selection = [val.name(name) for name, val in evaluate_exprs(self, *exprs)]
if not selection:
msg = "At least one expression must be provided to `select` with the Ibis backend."
raise ValueError(msg)
t = self.native.select(*selection)
return self._with_native(t)
def drop(self, columns: Sequence[str], *, strict: bool) -> Self:
columns_to_drop = parse_columns_to_drop(self, columns, strict=strict)
selection = (col for col in self.columns if col not in columns_to_drop)
return self._with_native(self.native.select(*selection))
def lazy(self, *, backend: Implementation | None = None) -> Self:
# The `backend`` argument has no effect but we keep it here for
# backwards compatibility because in `narwhals.stable.v1`
# function `.from_native()` will return a DataFrame for Ibis.
if backend is not None: # pragma: no cover
msg = "`backend` argument is not supported for Ibis"
raise ValueError(msg)
return self
def with_columns(self, *exprs: IbisExpr) -> Self:
new_columns_map = dict(evaluate_exprs(self, *exprs))
return self._with_native(self.native.mutate(**new_columns_map))
def filter(self, predicate: IbisExpr) -> Self:
# `[0]` is safe as the predicate's expression only returns a single column
mask = cast("ir.BooleanValue", predicate(self)[0])
return self._with_native(self.native.filter(mask))
@property
def schema(self) -> dict[str, DType]:
if self._cached_schema is None:
# Note: prefer `self._cached_schema` over `functools.cached_property`
# due to Python3.13 failures.
self._cached_schema = {
name: native_to_narwhals_dtype(dtype, self._version)
for name, dtype in self.native.schema().fields.items()
}
return self._cached_schema
@property
def columns(self) -> list[str]:
if self._cached_columns is None:
self._cached_columns = (
list(self.schema)
if self._cached_schema is not None
else list(self.native.columns)
)
return self._cached_columns
def to_pandas(self) -> pd.DataFrame:
# only if version is v1, keep around for backcompat
return self.native.to_pandas()
def to_arrow(self) -> pa.Table:
# only if version is v1, keep around for backcompat
return self.native.to_pyarrow()
def _with_version(self, version: Version) -> Self:
return self.__class__(self.native, version=version)
def _with_native(self, df: ir.Table) -> Self:
return self.__class__(df, version=self._version)
def group_by(
self, keys: Sequence[str] | Sequence[IbisExpr], *, drop_null_keys: bool
) -> IbisGroupBy:
from narwhals._ibis.group_by import IbisGroupBy
return IbisGroupBy(self, keys, drop_null_keys=drop_null_keys)
def rename(self, mapping: Mapping[str, str]) -> Self:
def _rename(col: str) -> str:
return mapping.get(col, col)
return self._with_native(self.native.rename(_rename))
@staticmethod
def _join_drop_duplicate_columns(df: ir.Table, columns: Iterable[str], /) -> ir.Table:
"""Ibis adds a suffix to the right table col, even when it matches the left during a join."""
duplicates = set(df.columns).intersection(columns)
return df.drop(*duplicates) if duplicates else df
def join(
self,
other: Self,
*,
how: JoinStrategy,
left_on: Sequence[str] | None,
right_on: Sequence[str] | None,
suffix: str,
) -> Self:
how_native = "outer" if how == "full" else how
rname = "{name}" + suffix
if other == self:
# Ibis does not support self-references unless created as a view
other = self._with_native(other.native.view())
if how_native == "cross":
joined = self.native.join(other.native, how=how_native, rname=rname)
return self._with_native(joined)
# help mypy
assert left_on is not None # noqa: S101
assert right_on is not None # noqa: S101
predicates = self._convert_predicates(other, left_on, right_on)
joined = self.native.join(other.native, predicates, how=how_native, rname=rname)
if how_native == "left":
right_names = (n + suffix for n in right_on)
joined = self._join_drop_duplicate_columns(joined, right_names)
it = (cast("Binary", p.op()) for p in predicates if not isinstance(p, str))
to_drop = []
for pred in it:
right = pred.right.name
# Mirrors how polars works.
if right not in self.columns and pred.left.name != right:
to_drop.append(right)
if to_drop:
joined = joined.drop(*to_drop)
return self._with_native(joined)
def join_asof(
self,
other: Self,
*,
left_on: str,
right_on: str,
by_left: Sequence[str] | None,
by_right: Sequence[str] | None,
strategy: AsofJoinStrategy,
suffix: str,
) -> Self:
rname = "{name}" + suffix
strategy_op = {"backward": operator.ge, "forward": operator.le}
predicates: JoinPredicates = []
if op := strategy_op.get(strategy):
on: ir.BooleanColumn = op(self.native[left_on], other.native[right_on])
else:
msg = "Only `backward` and `forward` strategies are currently supported for Ibis"
raise NotImplementedError(msg)
if by_left is not None and by_right is not None:
predicates = self._convert_predicates(other, by_left, by_right)
joined = self.native.asof_join(other.native, on, predicates, rname=rname)
joined = self._join_drop_duplicate_columns(joined, [right_on + suffix])
if by_right is not None:
right_names = (n + suffix for n in by_right)
joined = self._join_drop_duplicate_columns(joined, right_names)
return self._with_native(joined)
def _convert_predicates(
self, other: Self, left_on: Sequence[str], right_on: Sequence[str]
) -> JoinPredicates:
if left_on == right_on:
return left_on
return [
cast("ir.BooleanColumn", (self.native[left] == other.native[right]))
for left, right in zip(left_on, right_on)
]
def collect_schema(self) -> dict[str, DType]:
return {
name: native_to_narwhals_dtype(dtype, self._version)
for name, dtype in self.native.schema().fields.items()
}
def unique(
self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy
) -> Self:
if subset_ := subset if keep == "any" else (subset or self.columns):
# Sanitise input
if any(x not in self.columns for x in subset_):
msg = f"Columns {set(subset_).difference(self.columns)} not found in {self.columns}."
raise ColumnNotFoundError(msg)
mapped_keep: dict[str, Literal["first"] | None] = {
"any": "first",
"none": None,
}
to_keep = mapped_keep[keep]
return self._with_native(self.native.distinct(on=subset_, keep=to_keep))
return self._with_native(self.native.distinct(on=subset))
def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self:
if isinstance(descending, bool):
descending = [descending for _ in range(len(by))]
sort_cols = []
for i in range(len(by)):
direction_fn = ibis.desc if descending[i] else ibis.asc
col = direction_fn(by[i], nulls_first=not nulls_last)
sort_cols.append(cast("ir.Column", col))
return self._with_native(self.native.order_by(*sort_cols))
def drop_nulls(self, subset: Sequence[str] | None) -> Self:
subset_ = subset if subset is not None else self.columns
return self._with_native(self.native.drop_null(subset_))
def explode(self, columns: Sequence[str]) -> Self:
dtypes = self._version.dtypes
schema = self.collect_schema()
for col in columns:
dtype = schema[col]
if dtype != dtypes.List:
msg = (
f"`explode` operation not supported for dtype `{dtype}`, "
"expected List type"
)
raise InvalidOperationError(msg)
if len(columns) != 1:
msg = (
"Exploding on multiple columns is not supported with Ibis backend since "
"we cannot guarantee that the exploded columns have matching element counts."
)
raise NotImplementedError(msg)
return self._with_native(self.native.unnest(columns[0], keep_empty=True))
def unpivot(
self,
on: Sequence[str] | None,
index: Sequence[str] | None,
variable_name: str,
value_name: str,
) -> Self:
import ibis.selectors as s
index_: Sequence[str] = [] if index is None else index
on_: Sequence[str] = (
[c for c in self.columns if c not in index_] if on is None else on
)
# Discard columns not in the index
final_columns = list(dict.fromkeys([*index_, variable_name, value_name]))
unpivoted = self.native.pivot_longer(
s.cols(*on_), names_to=variable_name, values_to=value_name
)
return self._with_native(unpivoted.select(*final_columns))
def with_row_index(self, name: str, order_by: Sequence[str]) -> Self:
to_select = [
ibis.row_number().over(ibis.window(order_by=order_by)).name(name),
ibis.selectors.all(),
]
return self._with_native(self.native.select(*to_select))
def sink_parquet(self, file: str | Path | BytesIO) -> None:
if isinstance(file, BytesIO): # pragma: no cover
msg = "Writing to BytesIO is not supported for Ibis backend."
raise NotImplementedError(msg)
self.native.to_parquet(file)
gather_every = not_implemented.deprecated(
"`LazyFrame.gather_every` is deprecated and will be removed in a future version."
)
tail = not_implemented.deprecated(
"`LazyFrame.tail` is deprecated and will be removed in a future version."
)
# Intentionally not implemented, as Ibis does its own expression rewriting.
_evaluate_window_expr = not_implemented()