team-10/env/Lib/site-packages/narwhals/_spark_like/dataframe.py
2025-08-02 07:34:44 +02:00

563 lines
21 KiB
Python

from __future__ import annotations
from functools import reduce
from operator import and_
from typing import TYPE_CHECKING, Any
from narwhals._exceptions import issue_warning
from narwhals._namespace import is_native_spark_like
from narwhals._spark_like.utils import (
catch_pyspark_connect_exception,
catch_pyspark_sql_exception,
evaluate_exprs,
import_functions,
import_native_dtypes,
import_window,
native_to_narwhals_dtype,
)
from narwhals._sql.dataframe import SQLLazyFrame
from narwhals._utils import (
Implementation,
ValidateBackendVersion,
generate_temporary_column_name,
not_implemented,
parse_columns_to_drop,
)
from narwhals.exceptions import InvalidOperationError
if TYPE_CHECKING:
from collections.abc import Iterator, Mapping, Sequence
from io import BytesIO
from pathlib import Path
from types import ModuleType
import pyarrow as pa
from sqlframe.base.column import Column
from sqlframe.base.dataframe import BaseDataFrame
from sqlframe.base.window import Window
from typing_extensions import Self, TypeAlias, TypeIs
from narwhals._compliant.typing import CompliantDataFrameAny
from narwhals._spark_like.expr import SparkLikeExpr
from narwhals._spark_like.group_by import SparkLikeLazyGroupBy
from narwhals._spark_like.namespace import SparkLikeNamespace
from narwhals._utils import Version, _LimitedContext
from narwhals.dataframe import LazyFrame
from narwhals.dtypes import DType
from narwhals.typing import JoinStrategy, LazyUniqueKeepStrategy
SQLFrameDataFrame = BaseDataFrame[Any, Any, Any, Any, Any]
Incomplete: TypeAlias = Any # pragma: no cover
"""Marker for working code that fails type checking."""
class SparkLikeLazyFrame(
SQLLazyFrame["SparkLikeExpr", "SQLFrameDataFrame", "LazyFrame[SQLFrameDataFrame]"],
ValidateBackendVersion,
):
def __init__(
self,
native_dataframe: SQLFrameDataFrame,
*,
version: Version,
implementation: Implementation,
validate_backend_version: bool = False,
) -> None:
self._native_frame: SQLFrameDataFrame = native_dataframe
self._implementation = implementation
self._version = version
self._cached_schema: dict[str, DType] | None = None
self._cached_columns: list[str] | None = None
if validate_backend_version: # pragma: no cover
self._validate_backend_version()
@property
def _backend_version(self) -> tuple[int, ...]: # pragma: no cover
return self._implementation._backend_version()
@property
def _F(self): # type: ignore[no-untyped-def] # noqa: ANN202, N802
if TYPE_CHECKING:
from sqlframe.base import functions
return functions
else:
return import_functions(self._implementation)
@property
def _native_dtypes(self): # type: ignore[no-untyped-def] # noqa: ANN202
if TYPE_CHECKING:
from sqlframe.base import types
return types
else:
return import_native_dtypes(self._implementation)
@property
def _Window(self) -> type[Window]: # noqa: N802
if TYPE_CHECKING:
from sqlframe.base.window import Window
return Window
else:
return import_window(self._implementation)
@staticmethod
def _is_native(obj: SQLFrameDataFrame | Any) -> TypeIs[SQLFrameDataFrame]:
return is_native_spark_like(obj)
@classmethod
def from_native(cls, data: SQLFrameDataFrame, /, *, context: _LimitedContext) -> Self:
return cls(data, version=context._version, implementation=context._implementation)
def to_narwhals(self) -> LazyFrame[SQLFrameDataFrame]:
return self._version.lazyframe(self, level="lazy")
def __native_namespace__(self) -> ModuleType: # pragma: no cover
return self._implementation.to_native_namespace()
def __narwhals_namespace__(self) -> SparkLikeNamespace:
from narwhals._spark_like.namespace import SparkLikeNamespace
return SparkLikeNamespace(
version=self._version, implementation=self._implementation
)
def __narwhals_lazyframe__(self) -> Self:
return self
def _with_version(self, version: Version) -> Self:
return self.__class__(
self.native, version=version, implementation=self._implementation
)
def _with_native(self, df: SQLFrameDataFrame) -> Self:
return self.__class__(
df, version=self._version, implementation=self._implementation
)
def _to_arrow_schema(self) -> pa.Schema: # pragma: no cover
import pyarrow as pa # ignore-banned-import
from narwhals._arrow.utils import narwhals_to_native_dtype
schema: list[tuple[str, pa.DataType]] = []
nw_schema = self.collect_schema()
native_schema = self.native.schema
for key, value in nw_schema.items():
try:
native_dtype = narwhals_to_native_dtype(value, self._version)
except Exception as exc: # noqa: BLE001,PERF203
native_spark_dtype = native_schema[key].dataType # type: ignore[index]
# If we can't convert the type, just set it to `pa.null`, and warn.
# Avoid the warning if we're starting from PySpark's void type.
# We can avoid the check when we introduce `nw.Null` dtype.
null_type = self._native_dtypes.NullType # pyright: ignore[reportAttributeAccessIssue]
if not isinstance(native_spark_dtype, null_type):
issue_warning(
f"Could not convert dtype {native_spark_dtype} to PyArrow dtype, {exc!r}",
UserWarning,
)
schema.append((key, pa.null()))
else:
schema.append((key, native_dtype))
return pa.schema(schema)
def _collect_to_arrow(self) -> pa.Table:
if self._implementation.is_pyspark() and self._backend_version < (4,):
import pyarrow as pa # ignore-banned-import
try:
return pa.Table.from_batches(self.native._collect_as_arrow())
except ValueError as exc:
if "at least one RecordBatch" in str(exc):
# Empty dataframe
data: dict[str, list[Any]] = {k: [] for k in self.columns}
pa_schema = self._to_arrow_schema()
return pa.Table.from_pydict(data, schema=pa_schema)
else: # pragma: no cover
raise
elif self._implementation.is_pyspark_connect() and self._backend_version < (4,):
import pyarrow as pa # ignore-banned-import
pa_schema = self._to_arrow_schema()
return pa.Table.from_pandas(self.native.toPandas(), schema=pa_schema)
else:
return self.native.toArrow()
def _iter_columns(self) -> Iterator[Column]:
for col in self.columns:
yield self._F.col(col)
@property
def columns(self) -> list[str]:
if self._cached_columns is None:
self._cached_columns = (
list(self.schema)
if self._cached_schema is not None
else self.native.columns
)
return self._cached_columns
def _collect(
self, backend: ModuleType | Implementation | str | None, **kwargs: Any
) -> CompliantDataFrameAny:
if backend is Implementation.PANDAS:
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
return PandasLikeDataFrame(
self.native.toPandas(),
implementation=Implementation.PANDAS,
validate_backend_version=True,
version=self._version,
validate_column_names=True,
)
elif backend is None or backend is Implementation.PYARROW:
from narwhals._arrow.dataframe import ArrowDataFrame
return ArrowDataFrame(
self._collect_to_arrow(),
validate_backend_version=True,
version=self._version,
validate_column_names=True,
)
elif backend is Implementation.POLARS:
import polars as pl # ignore-banned-import
from narwhals._polars.dataframe import PolarsDataFrame
return PolarsDataFrame(
pl.from_arrow(self._collect_to_arrow()), # type: ignore[arg-type]
validate_backend_version=True,
version=self._version,
)
msg = f"Unsupported `backend` value: {backend}" # pragma: no cover
raise ValueError(msg) # pragma: no cover
def collect(
self, backend: ModuleType | Implementation | str | None, **kwargs: Any
) -> CompliantDataFrameAny:
if self._implementation.is_pyspark_connect():
try:
return self._collect(backend, **kwargs)
except Exception as e: # noqa: BLE001
raise catch_pyspark_connect_exception(e) from None
return self._collect(backend, **kwargs)
def simple_select(self, *column_names: str) -> Self:
return self._with_native(self.native.select(*column_names))
def aggregate(self, *exprs: SparkLikeExpr) -> Self:
new_columns = evaluate_exprs(self, *exprs)
new_columns_list = [col.alias(col_name) for col_name, col in new_columns]
if self._implementation.is_pyspark():
try:
return self._with_native(self.native.agg(*new_columns_list))
except Exception as e: # noqa: BLE001
raise catch_pyspark_sql_exception(e, self) from None
return self._with_native(self.native.agg(*new_columns_list))
def select(self, *exprs: SparkLikeExpr) -> Self:
new_columns = evaluate_exprs(self, *exprs)
new_columns_list = [col.alias(col_name) for (col_name, col) in new_columns]
if self._implementation.is_pyspark(): # pragma: no cover
try:
return self._with_native(self.native.select(*new_columns_list))
except Exception as e: # noqa: BLE001
raise catch_pyspark_sql_exception(e, self) from None
return self._with_native(self.native.select(*new_columns_list))
def with_columns(self, *exprs: SparkLikeExpr) -> Self:
new_columns = evaluate_exprs(self, *exprs)
if self._implementation.is_pyspark(): # pragma: no cover
try:
return self._with_native(self.native.withColumns(dict(new_columns)))
except Exception as e: # noqa: BLE001
raise catch_pyspark_sql_exception(e, self) from None
return self._with_native(self.native.withColumns(dict(new_columns)))
def filter(self, predicate: SparkLikeExpr) -> Self:
# `[0]` is safe as the predicate's expression only returns a single column
condition = predicate._call(self)[0]
if self._implementation.is_pyspark():
try:
return self._with_native(self.native.where(condition))
except Exception as e: # noqa: BLE001
raise catch_pyspark_sql_exception(e, self) from None
return self._with_native(self.native.where(condition))
@property
def schema(self) -> dict[str, DType]:
if self._cached_schema is None:
self._cached_schema = {
field.name: native_to_narwhals_dtype(
field.dataType,
self._version,
self._native_dtypes,
self.native.sparkSession,
)
for field in self.native.schema
}
return self._cached_schema
def collect_schema(self) -> dict[str, DType]:
return self.schema
def drop(self, columns: Sequence[str], *, strict: bool) -> Self:
columns_to_drop = parse_columns_to_drop(self, columns, strict=strict)
return self._with_native(self.native.drop(*columns_to_drop))
def head(self, n: int) -> Self:
return self._with_native(self.native.limit(n))
def group_by(
self, keys: Sequence[str] | Sequence[SparkLikeExpr], *, drop_null_keys: bool
) -> SparkLikeLazyGroupBy:
from narwhals._spark_like.group_by import SparkLikeLazyGroupBy
return SparkLikeLazyGroupBy(self, keys, drop_null_keys=drop_null_keys)
def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self:
if isinstance(descending, bool):
descending = [descending] * len(by)
if nulls_last:
sort_funcs = (
self._F.desc_nulls_last if d else self._F.asc_nulls_last
for d in descending
)
else:
sort_funcs = (
self._F.desc_nulls_first if d else self._F.asc_nulls_first
for d in descending
)
sort_cols = [sort_f(col) for col, sort_f in zip(by, sort_funcs)]
return self._with_native(self.native.sort(*sort_cols))
def drop_nulls(self, subset: Sequence[str] | None) -> Self:
subset = list(subset) if subset else None
return self._with_native(self.native.dropna(subset=subset))
def rename(self, mapping: Mapping[str, str]) -> Self:
rename_mapping = {
colname: mapping.get(colname, colname) for colname in self.columns
}
return self._with_native(
self.native.select(
[self._F.col(old).alias(new) for old, new in rename_mapping.items()]
)
)
def unique(
self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy
) -> Self:
if subset and (error := self._check_columns_exist(subset)):
raise error
subset = list(subset) if subset else None
if keep == "none":
tmp = generate_temporary_column_name(8, self.columns)
window = self._Window.partitionBy(subset or self.columns)
df = (
self.native.withColumn(tmp, self._F.count("*").over(window))
.filter(self._F.col(tmp) == self._F.lit(1))
.drop(self._F.col(tmp))
)
return self._with_native(df)
return self._with_native(self.native.dropDuplicates(subset=subset))
def join(
self,
other: Self,
how: JoinStrategy,
left_on: Sequence[str] | None,
right_on: Sequence[str] | None,
suffix: str,
) -> Self:
left_columns = self.columns
right_columns = other.columns
right_on_: list[str] = list(right_on) if right_on is not None else []
left_on_: list[str] = list(left_on) if left_on is not None else []
# create a mapping for columns on other
# `right_on` columns will be renamed as `left_on`
# the remaining columns will be either added the suffix or left unchanged.
right_cols_to_rename = (
[c for c in right_columns if c not in right_on_]
if how != "full"
else right_columns
)
rename_mapping = {
**dict(zip(right_on_, left_on_)),
**{
colname: f"{colname}{suffix}" if colname in left_columns else colname
for colname in right_cols_to_rename
},
}
other_native = other.native.select(
[self._F.col(old).alias(new) for old, new in rename_mapping.items()]
)
# If how in {"semi", "anti"}, then resulting columns are same as left columns
# Otherwise, we add the right columns with the new mapping, while keeping the
# original order of right_columns.
col_order = left_columns.copy()
if how in {"inner", "left", "cross"}:
col_order.extend(
rename_mapping[colname]
for colname in right_columns
if colname not in right_on_
)
elif how == "full":
col_order.extend(rename_mapping.values())
right_on_remapped = [rename_mapping[c] for c in right_on_]
on_ = (
reduce(
and_,
(
getattr(self.native, left_key) == getattr(other_native, right_key)
for left_key, right_key in zip(left_on_, right_on_remapped)
),
)
if how == "full"
else None
if how == "cross"
else left_on_
)
how_native = "full_outer" if how == "full" else how
return self._with_native(
self.native.join(other_native, on=on_, how=how_native).select(col_order)
)
def explode(self, columns: Sequence[str]) -> Self:
dtypes = self._version.dtypes
schema = self.collect_schema()
for col_to_explode in columns:
dtype = schema[col_to_explode]
if dtype != dtypes.List:
msg = (
f"`explode` operation not supported for dtype `{dtype}`, "
"expected List type"
)
raise InvalidOperationError(msg)
column_names = self.columns
if len(columns) != 1:
msg = (
"Exploding on multiple columns is not supported with SparkLike backend since "
"we cannot guarantee that the exploded columns have matching element counts."
)
raise NotImplementedError(msg)
if self._implementation.is_pyspark() or self._implementation.is_pyspark_connect():
return self._with_native(
self.native.select(
*[
self._F.col(col_name).alias(col_name)
if col_name != columns[0]
else self._F.explode_outer(col_name).alias(col_name)
for col_name in column_names
]
)
)
elif self._implementation.is_sqlframe():
# Not every sqlframe dialect supports `explode_outer` function
# (see https://github.com/eakmanrq/sqlframe/blob/3cb899c515b101ff4c197d84b34fae490d0ed257/sqlframe/base/functions.py#L2288-L2289)
# therefore we simply explode the array column which will ignore nulls and
# zero sized arrays, and append these specific condition with nulls (to
# match polars behavior).
def null_condition(col_name: str) -> Column:
return self._F.isnull(col_name) | (self._F.array_size(col_name) == 0)
return self._with_native(
self.native.select(
*[
self._F.col(col_name).alias(col_name)
if col_name != columns[0]
else self._F.explode(col_name).alias(col_name)
for col_name in column_names
]
).union(
self.native.filter(null_condition(columns[0])).select(
*[
self._F.col(col_name).alias(col_name)
if col_name != columns[0]
else self._F.lit(None).alias(col_name)
for col_name in column_names
]
)
)
)
else: # pragma: no cover
msg = "Unreachable code, please report an issue at https://github.com/narwhals-dev/narwhals/issues"
raise AssertionError(msg)
def unpivot(
self,
on: Sequence[str] | None,
index: Sequence[str] | None,
variable_name: str,
value_name: str,
) -> Self:
if self._implementation.is_sqlframe():
if variable_name == "":
msg = "`variable_name` cannot be empty string for sqlframe backend."
raise NotImplementedError(msg)
if value_name == "":
msg = "`value_name` cannot be empty string for sqlframe backend."
raise NotImplementedError(msg)
else: # pragma: no cover
pass
ids = tuple(index) if index else ()
values = (
tuple(set(self.columns).difference(set(ids))) if on is None else tuple(on)
)
unpivoted_native_frame = self.native.unpivot(
ids=ids,
values=values,
variableColumnName=variable_name,
valueColumnName=value_name,
)
if index is None:
unpivoted_native_frame = unpivoted_native_frame.drop(*ids)
return self._with_native(unpivoted_native_frame)
def with_row_index(self, name: str, order_by: Sequence[str]) -> Self:
if order_by is None:
msg = "Cannot pass `order_by` to `with_row_index` for PySpark-like"
raise TypeError(msg)
row_index_expr = (
self._F.row_number().over(
self._Window.partitionBy(self._F.lit(1)).orderBy(*order_by)
)
- 1
).alias(name)
return self._with_native(self.native.select(row_index_expr, *self.columns))
def sink_parquet(self, file: str | Path | BytesIO) -> None:
self.native.write.parquet(file)
gather_every = not_implemented.deprecated(
"`LazyFrame.gather_every` is deprecated and will be removed in a future version."
)
join_asof = not_implemented()
tail = not_implemented.deprecated(
"`LazyFrame.tail` is deprecated and will be removed in a future version."
)