team-10/env/Lib/site-packages/sympy/polys/matrices/normalforms.py
2025-08-02 07:34:44 +02:00

540 lines
17 KiB
Python

'''Functions returning normal forms of matrices'''
from collections import defaultdict
from .domainmatrix import DomainMatrix
from .exceptions import DMDomainError, DMShapeError
from sympy.ntheory.modular import symmetric_residue
from sympy.polys.domains import QQ, ZZ
# TODO (future work):
# There are faster algorithms for Smith and Hermite normal forms, which
# we should implement. See e.g. the Kannan-Bachem algorithm:
# <https://www.researchgate.net/publication/220617516_Polynomial_Algorithms_for_Computing_the_Smith_and_Hermite_Normal_Forms_of_an_Integer_Matrix>
def smith_normal_form(m):
'''
Return the Smith Normal Form of a matrix `m` over the ring `domain`.
This will only work if the ring is a principal ideal domain.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import smith_normal_form
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
... [ZZ(3), ZZ(9), ZZ(6)],
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> print(smith_normal_form(m).to_Matrix())
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, 30]])
'''
invs = invariant_factors(m)
smf = DomainMatrix.diag(invs, m.domain, m.shape)
return smf
def is_smith_normal_form(m):
'''
Checks that the matrix is in Smith Normal Form
'''
domain = m.domain
shape = m.shape
zero = domain.zero
m = m.to_list()
for i in range(shape[0]):
for j in range(shape[1]):
if i == j:
continue
if not m[i][j] == zero:
return False
upper = min(shape[0], shape[1])
for i in range(1, upper):
if m[i-1][i-1] == zero:
if m[i][i] != zero:
return False
else:
r = domain.div(m[i][i], m[i-1][i-1])[1]
if r != zero:
return False
return True
def add_columns(m, i, j, a, b, c, d):
# replace m[:, i] by a*m[:, i] + b*m[:, j]
# and m[:, j] by c*m[:, i] + d*m[:, j]
for k in range(len(m)):
e = m[k][i]
m[k][i] = a*e + b*m[k][j]
m[k][j] = c*e + d*m[k][j]
def invariant_factors(m):
'''
Return the tuple of abelian invariants for a matrix `m`
(as in the Smith-Normal form)
References
==========
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
[2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf
'''
domain = m.domain
shape = m.shape
m = m.to_list()
return _smith_normal_decomp(m, domain, shape=shape, full=False)
def smith_normal_decomp(m):
'''
Return the Smith-Normal form decomposition of matrix `m`.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import smith_normal_decomp
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
... [ZZ(3), ZZ(9), ZZ(6)],
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> a, s, t = smith_normal_decomp(m)
>>> assert a == s * m * t
'''
domain = m.domain
rows, cols = shape = m.shape
m = m.to_list()
invs, s, t = _smith_normal_decomp(m, domain, shape=shape, full=True)
smf = DomainMatrix.diag(invs, domain, shape).to_dense()
s = DomainMatrix(s, domain=domain, shape=(rows, rows))
t = DomainMatrix(t, domain=domain, shape=(cols, cols))
return smf, s, t
def _smith_normal_decomp(m, domain, shape, full):
'''
Return the tuple of abelian invariants for a matrix `m`
(as in the Smith-Normal form). If `full=True` then invertible matrices
``s, t`` such that the product ``s, m, t`` is the Smith Normal Form
are also returned.
'''
if not domain.is_PID:
msg = f"The matrix entries must be over a principal ideal domain, but got {domain}"
raise ValueError(msg)
rows, cols = shape
zero = domain.zero
one = domain.one
def eye(n):
return [[one if i == j else zero for i in range(n)] for j in range(n)]
if 0 in shape:
if full:
return (), eye(rows), eye(cols)
else:
return ()
if full:
s = eye(rows)
t = eye(cols)
def add_rows(m, i, j, a, b, c, d):
# replace m[i, :] by a*m[i, :] + b*m[j, :]
# and m[j, :] by c*m[i, :] + d*m[j, :]
for k in range(len(m[0])):
e = m[i][k]
m[i][k] = a*e + b*m[j][k]
m[j][k] = c*e + d*m[j][k]
def clear_column():
# make m[1:, 0] zero by row and column operations
pivot = m[0][0]
for j in range(1, rows):
if m[j][0] == zero:
continue
d, r = domain.div(m[j][0], pivot)
if r == zero:
add_rows(m, 0, j, 1, 0, -d, 1)
if full:
add_rows(s, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[j][0])
d_0 = domain.exquo(m[j][0], g)
d_j = domain.exquo(pivot, g)
add_rows(m, 0, j, a, b, d_0, -d_j)
if full:
add_rows(s, 0, j, a, b, d_0, -d_j)
pivot = g
def clear_row():
# make m[0, 1:] zero by row and column operations
pivot = m[0][0]
for j in range(1, cols):
if m[0][j] == zero:
continue
d, r = domain.div(m[0][j], pivot)
if r == zero:
add_columns(m, 0, j, 1, 0, -d, 1)
if full:
add_columns(t, 0, j, 1, 0, -d, 1)
else:
a, b, g = domain.gcdex(pivot, m[0][j])
d_0 = domain.exquo(m[0][j], g)
d_j = domain.exquo(pivot, g)
add_columns(m, 0, j, a, b, d_0, -d_j)
if full:
add_columns(t, 0, j, a, b, d_0, -d_j)
pivot = g
# permute the rows and columns until m[0,0] is non-zero if possible
ind = [i for i in range(rows) if m[i][0] != zero]
if ind and ind[0] != zero:
m[0], m[ind[0]] = m[ind[0]], m[0]
if full:
s[0], s[ind[0]] = s[ind[0]], s[0]
else:
ind = [j for j in range(cols) if m[0][j] != zero]
if ind and ind[0] != zero:
for row in m:
row[0], row[ind[0]] = row[ind[0]], row[0]
if full:
for row in t:
row[0], row[ind[0]] = row[ind[0]], row[0]
# make the first row and column except m[0,0] zero
while (any(m[0][i] != zero for i in range(1,cols)) or
any(m[i][0] != zero for i in range(1,rows))):
clear_column()
clear_row()
def to_domain_matrix(m):
return DomainMatrix(m, shape=(len(m), len(m[0])), domain=domain)
if m[0][0] != 0:
c = domain.canonical_unit(m[0][0])
if domain.is_Field:
c = 1 / m[0][0]
if c != domain.one:
m[0][0] *= c
if full:
s[0] = [elem * c for elem in s[0]]
if 1 in shape:
invs = ()
else:
lower_right = [r[1:] for r in m[1:]]
ret = _smith_normal_decomp(lower_right, domain,
shape=(rows - 1, cols - 1), full=full)
if full:
invs, s_small, t_small = ret
s2 = [[1] + [0]*(rows-1)] + [[0] + row for row in s_small]
t2 = [[1] + [0]*(cols-1)] + [[0] + row for row in t_small]
s, s2, t, t2 = list(map(to_domain_matrix, [s, s2, t, t2]))
s = s2 * s
t = t * t2
s = s.to_list()
t = t.to_list()
else:
invs = ret
if m[0][0]:
result = [m[0][0]]
result.extend(invs)
# in case m[0] doesn't divide the invariants of the rest of the matrix
for i in range(len(result)-1):
a, b = result[i], result[i+1]
if b and domain.div(b, a)[1] != zero:
if full:
x, y, d = domain.gcdex(a, b)
else:
d = domain.gcd(a, b)
alpha = domain.div(a, d)[0]
if full:
beta = domain.div(b, d)[0]
add_rows(s, i, i + 1, 1, 0, x, 1)
add_columns(t, i, i + 1, 1, y, 0, 1)
add_rows(s, i, i + 1, 1, -alpha, 0, 1)
add_columns(t, i, i + 1, 1, 0, -beta, 1)
add_rows(s, i, i + 1, 0, 1, -1, 0)
result[i+1] = b * alpha
result[i] = d
else:
break
else:
if full:
if rows > 1:
s = s[1:] + [s[0]]
if cols > 1:
t = [row[1:] + [row[0]] for row in t]
result = invs + (m[0][0],)
if full:
return tuple(result), s, t
else:
return tuple(result)
def _gcdex(a, b):
r"""
This supports the functions that compute Hermite Normal Form.
Explanation
===========
Let x, y be the coefficients returned by the extended Euclidean
Algorithm, so that x*a + y*b = g. In the algorithms for computing HNF,
it is critical that x, y not only satisfy the condition of being small
in magnitude -- namely that |x| <= |b|/g, |y| <- |a|/g -- but also that
y == 0 when a | b.
"""
x, y, g = ZZ.gcdex(a, b)
if a != 0 and b % a == 0:
y = 0
x = -1 if a < 0 else 1
return x, y, g
def _hermite_normal_form(A):
r"""
Compute the Hermite Normal Form of DomainMatrix *A* over :ref:`ZZ`.
Parameters
==========
A : :py:class:`~.DomainMatrix` over domain :ref:`ZZ`.
Returns
=======
:py:class:`~.DomainMatrix`
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithm 2.4.5.)
"""
if not A.domain.is_ZZ:
raise DMDomainError('Matrix must be over domain ZZ.')
# We work one row at a time, starting from the bottom row, and working our
# way up.
m, n = A.shape
A = A.to_ddm().copy()
# Our goal is to put pivot entries in the rightmost columns.
# Invariant: Before processing each row, k should be the index of the
# leftmost column in which we have so far put a pivot.
k = n
for i in range(m - 1, -1, -1):
if k == 0:
# This case can arise when n < m and we've already found n pivots.
# We don't need to consider any more rows, because this is already
# the maximum possible number of pivots.
break
k -= 1
# k now points to the column in which we want to put a pivot.
# We want zeros in all entries to the left of the pivot column.
for j in range(k - 1, -1, -1):
if A[i][j] != 0:
# Replace cols j, k by lin combs of these cols such that, in row i,
# col j has 0, while col k has the gcd of their row i entries. Note
# that this ensures a nonzero entry in col k.
u, v, d = _gcdex(A[i][k], A[i][j])
r, s = A[i][k] // d, A[i][j] // d
add_columns(A, k, j, u, v, -s, r)
b = A[i][k]
# Do not want the pivot entry to be negative.
if b < 0:
add_columns(A, k, k, -1, 0, -1, 0)
b = -b
# The pivot entry will be 0 iff the row was 0 from the pivot col all the
# way to the left. In this case, we are still working on the same pivot
# col for the next row. Therefore:
if b == 0:
k += 1
# If the pivot entry is nonzero, then we want to reduce all entries to its
# right in the sense of the division algorithm, i.e. make them all remainders
# w.r.t. the pivot as divisor.
else:
for j in range(k + 1, n):
q = A[i][j] // b
add_columns(A, j, k, 1, -q, 0, 1)
# Finally, the HNF consists of those columns of A in which we succeeded in making
# a nonzero pivot.
return DomainMatrix.from_rep(A.to_dfm_or_ddm())[:, k:]
def _hermite_normal_form_modulo_D(A, D):
r"""
Perform the mod *D* Hermite Normal Form reduction algorithm on
:py:class:`~.DomainMatrix` *A*.
Explanation
===========
If *A* is an $m \times n$ matrix of rank $m$, having Hermite Normal Form
$W$, and if *D* is any positive integer known in advance to be a multiple
of $\det(W)$, then the HNF of *A* can be computed by an algorithm that
works mod *D* in order to prevent coefficient explosion.
Parameters
==========
A : :py:class:`~.DomainMatrix` over :ref:`ZZ`
$m \times n$ matrix, having rank $m$.
D : :ref:`ZZ`
Positive integer, known to be a multiple of the determinant of the
HNF of *A*.
Returns
=======
:py:class:`~.DomainMatrix`
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`, or
if *D* is given but is not in :ref:`ZZ`.
DMShapeError
If the matrix has more rows than columns.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithm 2.4.8.)
"""
if not A.domain.is_ZZ:
raise DMDomainError('Matrix must be over domain ZZ.')
if not ZZ.of_type(D) or D < 1:
raise DMDomainError('Modulus D must be positive element of domain ZZ.')
def add_columns_mod_R(m, R, i, j, a, b, c, d):
# replace m[:, i] by (a*m[:, i] + b*m[:, j]) % R
# and m[:, j] by (c*m[:, i] + d*m[:, j]) % R
for k in range(len(m)):
e = m[k][i]
m[k][i] = symmetric_residue((a * e + b * m[k][j]) % R, R)
m[k][j] = symmetric_residue((c * e + d * m[k][j]) % R, R)
W = defaultdict(dict)
m, n = A.shape
if n < m:
raise DMShapeError('Matrix must have at least as many columns as rows.')
A = A.to_list()
k = n
R = D
for i in range(m - 1, -1, -1):
k -= 1
for j in range(k - 1, -1, -1):
if A[i][j] != 0:
u, v, d = _gcdex(A[i][k], A[i][j])
r, s = A[i][k] // d, A[i][j] // d
add_columns_mod_R(A, R, k, j, u, v, -s, r)
b = A[i][k]
if b == 0:
A[i][k] = b = R
u, v, d = _gcdex(b, R)
for ii in range(m):
W[ii][i] = u*A[ii][k] % R
if W[i][i] == 0:
W[i][i] = R
for j in range(i + 1, m):
q = W[i][j] // W[i][i]
add_columns(W, j, i, 1, -q, 0, 1)
R //= d
return DomainMatrix(W, (m, m), ZZ).to_dense()
def hermite_normal_form(A, *, D=None, check_rank=False):
r"""
Compute the Hermite Normal Form of :py:class:`~.DomainMatrix` *A* over
:ref:`ZZ`.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.normalforms import hermite_normal_form
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)],
... [ZZ(3), ZZ(9), ZZ(6)],
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ)
>>> print(hermite_normal_form(m).to_Matrix())
Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])
Parameters
==========
A : $m \times n$ ``DomainMatrix`` over :ref:`ZZ`.
D : :ref:`ZZ`, optional
Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
being any multiple of $\det(W)$ may be provided. In this case, if *A*
also has rank $m$, then we may use an alternative algorithm that works
mod *D* in order to prevent coefficient explosion.
check_rank : boolean, optional (default=False)
The basic assumption is that, if you pass a value for *D*, then
you already believe that *A* has rank $m$, so we do not waste time
checking it for you. If you do want this to be checked (and the
ordinary, non-modulo *D* algorithm to be used if the check fails), then
set *check_rank* to ``True``.
Returns
=======
:py:class:`~.DomainMatrix`
The HNF of matrix *A*.
Raises
======
DMDomainError
If the domain of the matrix is not :ref:`ZZ`, or
if *D* is given but is not in :ref:`ZZ`.
DMShapeError
If the mod *D* algorithm is used but the matrix has more rows than
columns.
References
==========
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
(See Algorithms 2.4.5 and 2.4.8.)
"""
if not A.domain.is_ZZ:
raise DMDomainError('Matrix must be over domain ZZ.')
if D is not None and (not check_rank or A.convert_to(QQ).rank() == A.shape[0]):
return _hermite_normal_form_modulo_D(A, D)
else:
return _hermite_normal_form(A)